

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

ADVANCED NAVAL SURFACE FIRE SUPPORT
WEAPON EMPLOYMENT AGAINST MOBILE TARGETS

by

Hung B. Le

December 1999

Thesis Advisor: Arnold H. Buss
Second Reader: Douglas J. MacKinnon

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

December 1999
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE

ADVANCED NAVAL SURFACE FIRE SUPPORT WEAPON EMPLOYMENT AGAINST
MOBILE TARGETS
6. AUTHOR(S)

Le, Hung B.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, Maryland 20723-6099

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b.DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

 Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS), a mission area that is undergoing rapid
evolution. The Navy’s ability to effectively provide sea-based fire support to ground forces is profoundly challenged by mobile and
reduced dwell time targets. Furthermore, longer range enemy weapon systems, which must be destroyed at greater ranges prior to
their engagement of friendly forces, will make NSFS timeliness a difficult proposition. To overcome these threat trends, the United
States is developing sophisticated weapons that promise increased lethality, greater ranges and improved responsiveness. However,
the development of robust firing policies to ensure effective weapon utilization has lagged behind the hardware. Existing computer
models and simulations have not addressed the question of NSFS gun/missile firing policy. This thesis develops the Naval Surface
Fire Support Simulation (NSFSSim) model, a discrete-event simulation that serves as an analysis tool to determine favorable firing
policies for future NSFS gun and missile systems in support of determining the appropriate NSFS weapons mix. NSFSSim models
ships and their associated NSFS weapons in counterbattery and call fire missions against mobile, reduced dwell time targets.
Exploratory analysis using NSFSSim yields useful insights, and the component-based architecture underlying the model provides
significant flexibility for further analysis.

15. NUMBER OF PAGES

103
14. SUBJECT TERMS

Discrete-Event Simulation, Firing Policy, Java, Modeling and Simulation, Naval Surface Fire
Support

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239.18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited.

ADVANCED NAVAL SURFACE FIRE SUPPORT
WEAPON EMPLOYMENT AGAINST MOBILE TARGETS

Hung B. Le

Lieutenant, United States Navy
B.S., United States Naval Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 1999

 Author:

Hung B. Le

 Approved by:

Arnold H. Buss, Thesis Advisor

Douglas J. MacKinnon, Second Reader

Richard E. Rosenthal, Chairman
Department of Operations Research

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS),

a mission area that is undergoing rapid evolution. The Navy’s ability to effectively

provide sea-based fire support to ground forces is profoundly challenged by mobile and

reduced dwell time targets. Furthermore, longer range enemy weapon systems, which

must be destroyed at greater ranges prior to their engagement of friendly forces, will

make NSFS timeliness a difficult proposition. To overcome these threat trends, the

United States is developing sophisticated weapons that promise increased lethality,

greater ranges and improved responsiveness. However, the development of robust firing

policies to ensure effective weapon utilization has lagged behind the hardware. Existing

computer models and simulations have not addressed the question of NSFS gun/missile

firing policy. This thesis develops the Naval Surface Fire Support Simulation

(NSFSSim) model, a discrete-event simulation that serves as an analysis tool to

determine favorable firing policies for future NSFS gun and missile systems in support of

determining the appropriate NSFS weapons mix. NSFSSim models ships and their

associated NSFS weapons in counterbattery and call fire missions against mobile,

reduced dwell time targets. Exploratory analysis using NSFSSim yields useful insights,

and the component-based architecture underlying the model provides significant

flexibility for further analysis.

vi

DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

vii

TABLE OF CONTENTS

I. INTRODUCTION.. 1

A. NSFS WEAPONS... 4
B. MOTIVATION... 6
C. BACKGROUND .. 9
D. THESIS STRUCTURE... 15

II. NSFSSIM... 17

A. METHODOLOGY.. 17
B. MODELING PRINCIPLES .. 19

1. Object-Oriented Programming .. 19
2. The Listener Pattern... 21
3. Third Party Components .. 23
4. Manager Components .. 24

C. NSFSSIM STRUCTURE.. 24
D. NSFS SHIPS ... 27
E. NSFS SHIP MANAGERS .. 28
F. NSFS MISSION SCHEDULING... 30

1. Counterbattery Missions .. 31
2. Call Fire Missions .. 32

G. ARTILLERY BATTERIES .. 33
H. ARTILLERY BATTERY MANAGERS ... 36
I. NSFS WEAPONS... 37
J. NSFS REFEREE AND WEAPON TARGET MEDIATORS 39

III. ANALYSIS USING NSFSSIM .. 45

A. MEASURES OF PERFORMANCE... 45
B. MEASURE OF EFFECTIVENESS SELECTION... 46
C. SCENARIO DESCRIPTION.. 47
D. FIRING POLICY INVESTIGATION.. 48
E. VARYING ERGM DISPENSE DIAMETER .. 57

IV. CONCLUSIONS AND RECOMMENDATIONS.. 59

A. THE NEED FOR ANALYSIS.. 59
B. DEVELOPMENT OF NSFSSIM ... 59
C. RECOMMENDATIONS FOR FURTHER ANALYSIS 60

APPENDIX A: DATA STRUCTURES IN NSFSSIM... 63

APPENDIX B: CREATING ANIMATION IN NSFSSIM ... 75

LIST OF REFERENCES ... 83

INITIAL DISTRIBUTION LIST.. 85

viii

THIS PAGE INTENTIONALLY LEFT BLANK

ix

LIST OF FIGURES

Figure 1. Editing Input Files in NSFSSim... 15
Figure 2. NSFSSim’s Animation Mode ... 25
Figure 3. NSFSShip Component Hierarchy... 27
Figure 4. Specifying a Firing Policy.. 29
Figure 5. The Logic of Counterbattery Mission Generation.. 32
Figure 6. ArtilleryBattery Component Hierarchy.. 34
Figure 7. NSFSWeaponMover Component Hierarchy.. 38
Figure 8. Typical “Lazy W” Battery Formation.. 41
Figure 9. WeaponTargetMediator Logic ... 42
Figure 10. Baseline Histogram of Artillery Rounds Fired... 49
Figure 11. NSFSSim’s Text Editor.. 50
Figure 12. Firing Policy GGGGGMMM ... 51
Figure 13. Histogram for GGGGGMMM Firing Policy ... 52
Figure 14. Firing Policy MMMGGGGG ... 53
Figure 15. Histogram for MMMGGGGG Firing Policy ... 54
Figure 16. Firing Policy MMGGGG ... 55
Figure 17. Histogram for MMGGGG Firing Policy.. 56
Figure 18. Effect of Varying ERGM Dispense Diameter .. 57

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

AOA Analysis of Alternatives
ASM Anti-Ship Missile
ATACMS Army Tactical Missile System
C2 Command and Control
C4I Command, Control, Communications, Computers, and Intelligence
CEP Circular Error Probable
ELAN Enhanced Lanchester
ERGM Extended Range Guided Munition
FFTS Forward…From The Sea
FO Forward Observer
GPS Global Positioning System
GUI Graphical User Interface
IOC Initial Operational Capability
ITEM Integrated Theater Engagement Model
JHU/APL Johns Hopkins University, Applied Physics Laboratory
LASM Land Attack Standard Missile
MEF Marine Expeditionary Force
MK Mark
MOE Measure of Effectiveness
MOP Measure of Performance
MRSI Multiple Rounds Simultaneous Impact
MVC Model-View-Controller
NGFS Naval Gun Fire Support
NPS Naval Postgraduate School
NSFS Naval Surface Fire Support
NSFSSim Naval Surface Fire Support Simulation
NTACMS Navy Tactical Missile System
OMFTS Operational Maneuver From The Sea
OOP Object-Oriented Programming
OPNAV Office of the Chief of Naval Operations
PK Probability of Kill
RSTA Reconnaissance/Surveillance/Target Acquisition
SACC Supporting Arms Coordination Center
SAM Surface to Air Missile
SCLAWS Surface Combatant Land Attack Weapons Study
SM Standard Missile
SPA Self-Propelled Artillery
TACAIR Tactical Aircraft
TAFSM Target Acquisition Fire Support Model
TBM Theater Ballistic Missile
TLAM Tomahawk Land Attack Missile
TLE Target Location Error
TOF Time of Flight

xii

TPM Technical Performance Measure
TTP Tactics, Techniques, and Procedures
TTWS Tactical Tomahawk Weapon System
VLS Vertical Launching System

xiii

EXECUTIVE SUMMARY

Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS),

a mission area that is undergoing rapid evolution. The Navy’s ability to effectively

provide sea-based fire support to ground forces is profoundly challenged by mobile and

short dwell time targets. Furthermore, longer range enemy weapon systems, which must

be destroyed at greater ranges prior to their engagement of friendly forces, will make

NSFS timeliness a difficult proposition. To overcome these threat trends, the United

States is developing sophisticated weapons that promise increased lethality, greater

ranges and improved responsiveness. However, the development of robust firing policies

to ensure effective weapon utilization has lagged behind the hardware. The fiscal reality

of budgetary constraints and the challenges posed by ever-increasingly capable and

mobile enemy weapon systems highlight the need for sound analysis in the area of

tactical employment of precision weapons.

Existing computer models and simulations have not addressed the question of

NSFS gun/missile firing policies. Some studies conducted to address other NSFS issues

have successfully used a consortium-of-models approach. However, due to the rigid

design of these simulation models, major modification to existing code is required to

enable the models to work together. To overcome these difficulties, this thesis developed

the Naval Surface Fire Support Simulation (NSFSSim) model, a component-based,

discrete-event simulation that serves as an analysis tool to determine favorable firing

policies for future NSFS gun and missile systems. While no single model can properly

analyze all aspects of the complex problem of sea-based fire support, it can yield useful

insights to a small portion of the larger problem.

xiv

NSFSSim runs on any hardware platform and can be easily modified to support

additional features and greater resolution. This simulation model combines newly

developed components with a few previously developed components. A graphical user

interface was built to enable rapid modification of input data, execution of simulation

runs with different views, and the immediate display of output that lends itself to analysis

using operations research methods. Together, these components provide a useful analysis

tool that is dynamic, flexible, and component based. The notional scenario presented in

this thesis is designed to demonstrate the type of analysis that can be conducted using

NSFSSim.

NSFSSim was created as a first step toward the goal of providing military

planners and analysts with a component-based simulation tool that can aid in the

formulation of integrated NSFS gun and missile firing policies against mobile/relocatable

targets. Its uses extend beyond the analysis of firing sequences and dispense diameters

undertaken thus far. The model can be used to investigate optimal artillery battery tactics

against advanced NSFS weapons as well as the impact of response times, target location

errors, and weapon precision limits on the success of NSFS missions. Component

modifications and additions can be made easily to create future versions of NSFSSim that

are more complex and robust.

xv

ACKNOWLEDGMENT

I would like to thank Professor Arnold H. Buss for his outstanding guidance,

assistance, and support throughout the thesis process. I also wish to thank Jack Keane of

the Joint Warfare Analysis Department (JWAD) at JHU/APL for his dedicated efforts as

thesis tour liaison at APL. I would also like to express my appreciation for the

encouragement and insight given by the analysts of JWAD’s Joint Theater Analysis

Groupin particular, Ted Smyth, Richard Miller, and Alan Zimm. Furthermore, I want

to thank Russ Gingras and Steve Biemer who provided for and sponsored me on my

experience tour.

Last, but never least, I want to thank my wife Lyn, whose patience and

understanding helped me through two demanding years at NPS.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The end of the Cold War has redefined the environment in which the Navy must

operate. Amidst the challenges presented by increasingly scarce resources, the Navy has

undergone a gradual metamorphosis from a “blue water” force developed for open-ocean

engagements against the former Soviet Union to a littoral force that faces many potential

adversaries. Today’s Navy primarily projects power from the sea as an integrated part of

Joint strike operations and in support of the Joint land battle. The experiences of Desert

Shield/Desert Storm highlight the emerging prominence of naval support of ground

forces.

The Navy’s Forward…From The Sea (FFTS) and the Marine Corps’ Operational

Maneuver From The Sea (OMFTS), the Services’ authoritative statements on

warfighting, envision an expanded role for naval fire support in future operations.

Similarly, Joint Vision 2010 provides an operational template for future Joint warfighting

that focuses on leveraging technology to achieve such concepts as precision engagement

and dominant maneuver. Evolving warfighting concepts as well as advancements in

weapons technologies have altered perceptions about and broadened the potential

requirements for sea-based fire support. OMFTS, in particular, proposes dynamic

strategies and tactics aimed at decisive action, mobility, surprise, and fires to enable

maneuvers that exploit enemy weaknesses. Effective naval fire support is paramount if

OMFTS is to be realized.

Historically, naval firepower from surface combatants has contributed to the

success of nearly all military operations in or near the littorals. Traditional Naval Gun

 2

Fire Support (NGFS) has encompassed all naval guns from 3-inch to 16-inch to support

amphibious operations. Today’s modern warships have either one or two Mark (MK) 45

5-inch/54-caliber guns capable of firing ballistic rounds to a maximum range of

approximately thirteen nautical miles (nm). When precision fires are required, however,

the maximum effective range becomes greatly reduced. Moreover, fire support planning

and a plotting team using voice-reporting procedures is still accomplishing coordination

on the most modern cruisers and destroyers. Similarly, the Supporting Arms

Coordination Center (SACC) on the newest amphibious assault ship still employs the

manual practices and procedures reminiscent of World War II fire support planning.

Clearly, current weapon ranges, organization, and planning and coordination procedures

are inadequate to meet the requirements of 21st century warfighting concepts.

The precepts of attrition warfare are being replaced by the Marine Corps’ concept

of maneuver warfare, a paradigm which “envisions a faster-paced, longer-range insertion

of troops with greater reliance on naval fire support and logistics.” (Allen, 1996) No

longer viewed as a gun preparing a hostile beachhead for amphibious operations, offshore

fire support in the near future will be provided by precision-guided munitions and tactical

land attack missiles. These advanced weapons will be capable of destroying targets at

ranges in excess of 100 nm.

In recognition of these changes and the expanded role of surface combatants in

support of the Joint land battle, the Navy has updated its terminology, replacing NGFS

with Naval Surface Fire Support (NSFS). Joint Pub 1-02, Department of Defense

Dictionary of Military and Associated Terms, defines NSFS as “fires provided by Navy

 3

surface gun, missile, and electronic warfare systems in support of a unit or units tasked

with achieving the Joint commander’s objective.” (OCJCS, 1994)

Today NSFS is still limited in duration and is used primarily to provide short-

range fire support until organic artillery assets are established ashore. Due to weapons

limitations, fires are directed mainly at fixed defenses. In the near future, however, NSFS

will be provided at greater ranges and for extended durations. In the early stages of the

battle, sea-based fire support will serve as a surrogate for organic artillery, thereby

enabling ground forces to maneuver against the enemy. Later in the battle, NSFS will

complement tactical aircraft (TACAIR) and organic artillery ashore. Currently, logistics

support and command and control (C2) functions shift from sea to shore following the

post-assault phase of an amphibious operation. In the future it is likely that these

functions will remain offshore for as long as the situation permits. Advanced capability

NSFS weapons are one of the primary enabling factors of this new operational concept.

These new weapons will include the Extended Range Guided Munition (ERGM)

that will be fired from an improved 5-inch gun, a tactically employed Tomahawk missile,

and a responsive land attack missile that uses an existing missile airframe. Each missile

will compete for space inside shipboard MK 41 Vertical Launching Systems (VLS). All

of these advanced weapons will utilize Global Positioning System (GPS) satellites for

guidance to their respective aim points and promise greater lethality, range, and improved

responsiveness.

Several key threat trends have generated the need for such sophisticated weapons.

Chief among these trends are the improved mobility of artillery, theater ballistic missiles

(TBMs), and surface to air missiles (SAMs) and the use of shorter dwell times. Improved

 4

mobility and shorter dwell times equate to a reduced window of opportunity for fire

support weapons to detect, acquire, and effectively engage enemy targets. The prospect

of destroying such targets becomes especially remote because weapon times of flight

(TOF) increase as a result of extended ranges. However, longer-range enemy weapon

systems induce these extended ranges because the weapon systems must be destroyed

prior to their engagement of friendly forces. Additionally, improved enemy deception

capabilities will adversely affect friendly reconnaissance/surveillance/target acquisition

(RSTA) sensor performance.

Naval surface-launched weapon systems are being developed to provide Aegis

cruisers and destroyers the expanded capability of rapidly and precisely placing ordnance

on target in support of the Joint land battle as well as expeditionary operations in the

littorals. While weapons development has proceeded with the momentum of adequate

funding, weapons systems integration and tactical considerations remain at the

conceptual stages.

A. NSFS WEAPONS

The NSFS Program Office (PMS-429) of the Naval Sea Systems Command is

developing the Ex-171 ERGM that will be fired from a modified 5-inch/62-caliber gun.

The ERGM, which advertises a maximum range of 63 nm, is scheduled to be deployed

on DDG 81 and later Arleigh Burke class destroyers in 2002. Subsequently, this gun

system and the capability to fire ERGM will be backfitted on VLS-capable Ticonderoga

class cruisers, specifically CG 52 and later ships. This enhanced munition will dispense

bomblets using a variable dispense diameter feature. With this most important capability,

 5

bomblet patterns can be concentrated to maximize lethality against a single target or

broadened to allow the possibility of multiple mission kills against dispersed targets.

Tomahawk Land Attack Missiles (TLAMs) have already proved their

effectiveness in strike missions against fixed defenses. NSFS integration of this potent

weapon system involves the development of tactically tasked Tomahawk variants that are

capable of in-flight retargeting in response to fire mission adjustments. The Baseline IV

Tactical Tomahawk Weapon System (TTWS) will enable sea-based land attack ranges of

200 to 1,600 nm. The major operational requirements of TTWS are the following (JCM-

2237, 1998):

• Increase system flexibility to support receipt of missile/mission

communications and enroute retargeting of the missile to alternate

preplanned outcome or emergent target

• Reduce system response time to allow engagement of emergent and

relocatable targets

• Improve lethality against a wider target set

• Retain all Baseline III system capabilities (unless specifically exempted)

Required, but still unfunded, is a more responsive land attack missile adapted

from an existing missile airframe. Two major candidate airframes exist. The first is the

Standard Missile (SM-2), a capable but aging air defense missile employed on many

surface combatants. In its modified NSFS role, the Land Attack Standard Missile

(LASM) would carry a 120-pound improved unitary warhead and possess a maximum

 6

range of 120 nm. The second candidate missile is the Army Tactical Missile System

(ATACMS). The Navy version of this missile system, Navy Tactical Missile System

(NTACMS), would carry a larger warhead weighing 390 pounds and extend the

maximum range to 150 nm.

In A National Security Strategy for a New Century, President William J. Clinton

states that “the military challenges of the 21st century, coupled with the aging of key

elements of the U.S. force structure, require a fundamental transformation of our forces.”

One example of this transformation is the development of DD 21, the 21st Century Land

Attack Destroyer, which has an Initial Operational Capability (IOC) date of 2008.

Designed to replace Oliver Hazard Perry FFG 7 class frigates and Spruance DD 963

class destroyers, DD 21 will be a multi-mission platform. Its most potent mission,

however, will be land attack warfare. The twenty-three planned DD 21 class destroyers

will possess either a trainable or vertical 155-millimeter (mm) gun capable of firing 155-

mm howitzers and larger versions of ERGM to ranges in excess of 100 nm. DD 21 will

enjoy larger magazine capacities than today’s Aegis cruisers and destroyers, making it

even more formidable as an NSFS platform. It will also possess TTWS and a

complementary land attack missile.

B. MOTIVATION

Advanced NSFS weapons will bring vast performance improvements over the

current NSFS weapon, the MK 45 gun. Such technological sophistication comes with a

heavy cost penalty, however. These weapons will be much more expensive than today’s

5-inch ballistic ammunition. Cost concerns over ERGM have already surfaced. Recently

 7

the Navy appointed an outside assessment team at the Massachusetts Institute of

Technology’s Lincoln Lab to examine the program. “Some Navy officials are concerned

that the system’s complexity may increase its cost and delay deployment, currently

scheduled for 2002.” (Holzer, 1999) Moreover, ship magazines will accommodate fewer

of these larger munitions. Larger costs per weapon, fewer weapons per surface

combatant, and the desire for efficiency motivate an investigation into optimality

considerations for these advanced weapons.

The expectations for NSFS are at an all-time high. Sound qualitative and

quantitative analyses must be conducted to support efficient acquisition decisions that

meet emerging NSFS requirements. Similarly, analyses must be performed that

investigate procedures and doctrine for the effective tactical employment of these

advanced NSFS weapons. Existing computer models and simulations have not addressed

the question of NSFS gun/missile firing policies. While no one-model approach can

properly analyze all aspects of the complex problem of sea-based fire support, a single

model alone can yield useful insights to a small portion of the larger problem.

The previous section suggested problems that mobile, short dwell time targets

pose for NSFS weapons. To appreciate these problems, consider enemy weapon systems

such as artillery guns and howitzers. Most modern self-propelled artillery (SPA) and

towed artillery systems are capable of cross-country speeds of 40 or more kilometers per

hour (km/hr). Recall that advanced NSFS weapons such as ERGM and LASM fly to an

aim point believed to be the location of an enemy target. Because the aim point is

determined prior to weapon launch and remains fixed, any movement by the target away

from the aim point minimizes the likelihood of the weapon’s impacting the target. A

 8

Mach 2.0 LASM fired from a surface combatant stationed 25 nm from the enemy coast,

against a moving artillery unit that is 25 nm inland, surely will miss. Traveling at speeds

below Mach 1.0, an ERGM fired under the same conditions has no chance of success.

Realistically, an NSFS weapon can achieve a mission kill against a mobile target

only during the target’s dwell time, or the time that it remains stationary at a geographic

location. The window of opportunity for achieving this mission kill likely is narrow for

artillery systems. Conceivably, a SPA gun could take as little as 90 seconds to emplace

or make preparations to fire its gun, could fire six rounds at the rate of six rounds per

minute for a total of one minute, and take another 30 seconds to displace before moving

to a new location. This tactic of firing rounds and then moving away from an aim point

in avoidance of counterfire is commonly called “shoot and scoot.” (Zimm, 1996) This

particular artillery gun, then, would present a window of opportunity of three minutes for

an incoming NSFS missile or munition that must travel upwards of 50 nm prior to

impacting the aim point.

This thesis will develop the Naval Surface Fire Support Simulation (NSFSSim)

model, a discrete-event simulation model that can provide useful insights into the

problem of NSFS gun/missile firing policies against relocatable targets. The simulation

model will be used to explore the following questions:

• In the tactical employment of ERGM and a land attack missile, what firing

policies optimize mission effectiveness against mobile and short dwell

time targets such as SPA and towed artillery batteries that utilize “shoot

and scoot” tactics? Specifically, what gun/missile firing sequence(s)

minimize the number of rounds fired by a given mix of artillery batteries?

 9

• For a given mix of SPA and towed artillery batteries, is there an optimal

ERGM dispense diameter (20 meters (m), 40 m, 60 m, 80 m, 100 m)?

NSFSSim is simple and does not profess to offer any definitive results. However,

the model does provide some useful insights into the questions listed above. Combat is a

complex and uncertain proposition. In this case, the uncertainty is compounded by the

inclusion of future weapons systems, whose technical performance measures (TPM) are

still evolving. While these unknown parameters introduce uncertainties in any model,

they offer an open invitation for the application of simulation modeling. An analysis

surrounding the questions posed in the previous paragraph is presented in Chapter III.

C. BACKGROUND

Studies have been performed to investigate the expanded role of surface

combatants in support of land attack warfare. (Zimm, 1998) Analyses of alternatives

have been conducted to evaluate the effectiveness of various land attack gun systems.

(Zimm, 1999) Similarly, studies have been performed in efforts to decide which NSFS

missiles should be installed on the Navy’s newest surface combatants. (Schweizer, 1999)

Spreadsheet optimization to determine optimal ship ordnance loadouts for NSFS missions

has also been performed. (Chien, 1997) The impetus for these studies has been the

evolving relationship of NSFS to the ground war as well as emerging weapons

technologies. Prior to these analyses, the Office of the Chief of Naval Operations

(OPNAV) Strike and Fire Support Branch of the Surface Warfare Division (N863F),

along with the Amphibious Branch of the Expeditionary Warfare Division (N853), tasked

 10

the Johns Hopkins University, Applied Physics Laboratory (JHU/APL) with developing a

Road Map for NSFS. (Allen, 1996)

This Road Map was “defined as a time-phased summary of systems, concepts and

issues critical to development of an acquisition plan” that extends through 2010 and

beyond. (Allen, 1996) Phase 1 of the two-phase study provides a preliminary Road

Map and was completed in 1996; Phase 2, which concentrates on the qualitative factors

of NSFS and modeling NSFS’ impact on the Joint land battle, is currently ongoing at

JHU/APL.

The overall Road Map development in Phase 1 resulted in general observations,

conclusions, and recommendations for the future of NSFS. Some of the observations on

the current state of NSFS are:

• Perceptions have shifted from NGFS to NSFS.

• Warfighting concepts and scenarios are not yet mature.

• Joint command, control, communications, computers, and intelligence

(C4I) architectures are not keeping pace with weapons development.

• The organizational hierarchy established to manage NSFS architecture or

“system-of-systems” is widely diffused.

Compounding these observations are key threat target trends that reveal shortfalls

in NSFS and serve as drivers for future requirements. Among these trends are use of

short dwell time and mobile targets and enemy employment of longer range weapon

 11

systems. Chief among the conclusions and recommendations drawn from Phase 1 of the

Road Map are (Allen, 1996):

• There exists a need for a new vision that captures the relationship between

tactical and strategic fires and the key performance parameters of NSFS

(range, lethality, and responsiveness).

• There is a need for quantitative and qualitative analyses to support sound

Navy acquisition decisions.

In February 1998, JHU/APL released a report entitled Land Attack Warfare

Technical Studies that addressed the above recommendations. The report documents the

results of three studies conducted at JHU/APL. The first two investigations were

performed under the umbrella of the Surface Combatant Land Attack Weapons Study

(SCLAWS). The first was “a study which investigated the potential importance of Naval

Surface Fire Support advanced gun weapon systems in the context of a Marine

Expeditionary Force (MEF) level Joint-approved scenario.” (Zimm, 1998) The second

was a “study which investigated some of the issues surrounding optimizing the

employment of low-Circular Error Probable (CEP) rounds.” (Zimm, 1998) The third

study investigated “the potential of using advanced Tactics, Techniques, and Procedures

(TTP) in the employment of advanced NSFS weapons.” (Zimm, 1998) All three

investigations utilized a group of existing models, with and without major code

modifications.

SCLAWS Part 1A concluded that ERGM is able to shape the battlefield prior to

engagements through a superior combination of range, lethality, and responsiveness. In

 12

addition, different munition types are necessary to effectively engage a diversity of

targets. Target mobility and hardness issues were addressed. Lastly, the study concluded

that surface combatants armed with anti-armor terminally homing rounds would benefit

by preserving their ability to save ammunition for other targets. (Zimm, 1998)

Part 1B of SCLAWS was a weapons optimization analysis. Among the

recommendations offered was the importance of target location error (TLE) reduction to

improve fire support weapons effectiveness. (Zimm, 1998) Also recommended was the

development of algorithms to determine optimal dispense diameters against different

targets. The study determined that optimal dispense diameters vary for individual target

types, but simulation runs with mixtures of different target types were not conducted.

The study also cited a need for an NSFS fire control system that facilitates a

Multiple Rounds Simultaneous Impact (MRSI) capability. The idea behind MRSI is to

coordinate individual weapon TOF such that multiple rounds impact one or more targets

simultaneously. Theoretically, MRSI would degrade the effectiveness of enemy artillery

tactics such as “shoot and scoot” that seek to reduce their vulnerability. MRSI has the

support of many subject matter experts who espouse the benefits of massed or volume

fire. In 1996, Lieutenant General Paul Van Riper documented the requirement for

volume fire in Naval Surface Fire Support Requirements for Operational Maneuver

From The Sea.

The third study incorporated advanced TTP into a four-model consortium, which

included the Integrated Theater Engagement Model (ITEM), the “Enhanced Lanchester”

model (ELAN), the Target Acquisition Fire Support Model (TAFSM), and the Army’s

ARTQUIK model. Code changes were made primarily to TAFSM, the Army’s premier

 13

fire support model. The study concluded that advanced TTP and “shooting smart” were

critical to the reduction of ERGM quantity required to support a MEF. The results also

demonstrated the significance of increased magazine sizes. When magazine capacities

were limited, ships spent much of the engagement off line replenishing their ammunition.

In 1999 JHU/APL completed an analysis of alternatives study which examined

“the relative effectiveness in a land attack role of a 155mm Trainable Advanced Gun

System as compared to a 155mm Vertical Advanced Gun System.” (Zimm, 1999) Once

again, TAFSM, ELAN, and ARTQUIK models were linked. The study concluded that

overall a 155mm Trainable gun outperformed a 155mm Vertical gun as well as a 5-

inch/62-caliber gun. This conclusion is in agreement with the most recent

recommendation made by United Defense, the prime contractor for the DD 21 gun

design, for a traditional, turreted gun in lieu of a vertical gun. The Navy has concurred

with this recommendation and will pursue a trainable gun solution. (Skibitski, 1999)

The debate continues over what land attack missiles to deploy on Aegis cruisers

and destroyers to improve NSFS capabilities. For more than three years, the Navy has

wrestled with this decision of what NSFS missiles to install on these surface combatants.

In April 1999 Chief of Naval Operations Admiral Jay Johnson agreed with a

recommendation for the Navy to purchase LASM. The Navy considers the procurement

of LASM to be more cost-effective than converting the ATACMS to NTACMs. The

Navy plans to convert 800 to 1,200 aged SM-2s to outfit 22 Aegis cruisers and 27 Aegis

destroyers. (Schweizer, 1999) Meanwhile, NTACMS builder Lockheed Martin has

begun an intense lobbying campaign, asserting that NTACMS will be less costly than

LASM because, with a larger warhead and greater range, fewer missiles will be required

 14

to destroy enemy targets. JHU/APL conducted the most recent evaluation of the two

missiles, but neither missile dominated the other in the study.

NSFSSim was created as a first step toward the goal of providing military

planners and analysts with a component-based simulation tool that can aid in the

formulation of integrated NSFS gun and missile firing policies against mobile/relocatable

targets. While not definitive, the simulation model is designed to operate on different

platforms and to possess significant flexibility such that modifications can easily be made

to increase the resolution or focus of the model. For example, instead of analyzing the

NSFS problem, NSFSSim could be extended to examine defensive firing policies for

surface combatants against anti-ship missiles (ASM). Another desirable feature of

NSFSSim is that its user can quickly modify input parameters and immediately run

simulations using a new data set (Fig. 1). Appendix A discusses the data structures and

Java source code that make this possible.

Having provided a brief discussion of the challenges for NSFS and an overview

of some studies that have been performed to address relevant NSFS issues, the next

section describes the structure of this thesis.

 15

Figure 1. Editing Input Files in NSFSSim

NSFSSim allows the user to easily modify input data. By
clicking on the Edit menu, the user can access any one of
five editable data files. Changes to the data are made by
modifying existing text fields and then overwriting the
current file.

D. THESIS STRUCTURE

NSFSSim is a discrete-event simulation written using the Java programming

language. As is the case with many simulation studies conducted at the Naval

Postgraduate School (NPS), the flexible component architecture resident in NSFSSim is

achieved by the use of Simkit, a discrete-event simulation package authored by Assistant

Professor Arnold H. Buss and Lieutenant Kirk Stork, United States Navy (USN). (Stork,

1996)

The next chapter will provide a detailed description of this analysis tool, focusing

on its development as well as the logic, assumptions, and interactions that drive the

 16

model. Chapter III will offer an account of the types of analysis that can be conducted

using NSFSSim. Finally, Chapter IV will summarize the results of the study, offering

conclusions and recommendations for further research.

 17

II. NSFSSIM

NSFSSim was developed as an analytical tool to provide insights into the problem

of optimizing advanced NSFS weapons employment against mobile, short dwell time

targets. The model’s object-oriented design enables its extension to the fulfillment of

other purposes beyond this application. Conceivably, NSFSSim could be used to address

the following issues relevant to simulation studies (Townsend, 1999):

• Hardware acquisition, in which the new system (or additional purchases)

are evaluated for their comparative worth.

• Force structuring, in which the force is shaped to incorporate the correct

ratio of weapon systems of the right types.

• Tactical Development, in which non-lethal simulation can identify

potential strengths and weaknesses of certain tactics.

• Capability of Forces, where the ability of the force to accomplish missions

in theater is evaluated.

NSFSSim uses a discrete-event simulation methodology that is written in Java

and uses some of Simkit’s existing components and functions.

A. METHODOLOGY

The decision to utilize Java and Simkit to build NSFSSim was an easy one. Java

offers platform independence, security, and powerful programming capabilities that are

 18

not found in other languages. Simkit, which is written in Java, likewise provides a wealth

of software components. When properly combined, or “loosely coupled,” these

components can produce a robust and flexible discrete-event simulation. (Bradley and

Buss, 1998)

Simulation methodology was chosen to investigate NSFS firing sequences

because of the intrinsic properties of the modern battlefield. Forces interacting on a

modern battlefield will exhibit stochastic properties. Many interrelationships combine to

create a complex, non-linear situation. A discrete-event simulation can model the

dynamic processes associated with the modern battlefield. As is the case with most real-

world systems, the NSFS problem is too complex to be evaluated analytically using a

purely mathematical method. On the other hand, by virtue of today’s powerful

computers, a simulation enables a relatively rapid numerical evaluation of the problem.

Within NSFSSim, a discrete-event mechanism was used to advance the simulated

clock. The state variables in a discrete-event simulation change instantaneously at certain

points in simulated time, which correspond to the occurrence of events. Simkit provides

all of the basic tools needed to construct a discrete-event simulation: a mechanism for

scheduling events, updating an event list as events occur, and removing events from the

event list.

Having presented the general methodology of NSFSSim, we next turn to a brief

discussion of object-oriented programming (OOP) principles as a precursor to the more-

detailed modeling aspects of NSFSSim.

 19

B. MODELING PRINCIPLES

Before beginning an overview of NSFSSim’s component-based design, it is

useful first to provide a rudimentary introduction to OOP definitions and modeling

principles. This section provides a brief description of OOP and its important design

concepts, such as inheritance and encapsulation. In addition, unique Java modeling

concepts will be presented.

1. Object-Oriented Programming

OOP has redefined the ways software developers think about and design their

programs. Traditional, procedure-structured programming focuses on the design of

algorithms and using data structures to manipulate those logic functions. OOP reverses

this approach, focusing first on the design of the data structures and then incorporating

functions into the data structures. “Simply stated, object-oriented design is a technique

that focuses design on the data (= objects) and on the interfaces to it.” (Hortsmann and

Cornell, 1997)

A central concept in OOP is designing the data structures, or objects, such that

each is responsible for executing a group of related tasks. When an object relies on

functions or properties of another object, the former should “ask” the latter for the desired

information via method calls rather than directly manipulate that object’s data. In this

manner, internal data and information remains hidden within objects. This principle of

data hiding, referred to as encapsulation, enhances reusability and tends to minimize the

time it takes to debug programming errors.

 20

In OOP classes are templates for objects. The class is the single most important

component in OOP design because it is the blueprint from which an object is actually

constructed. When one creates an object using a class template, one is said to instantiate,

or create an instance of, an object. For example, with a line of code like

SPArtillery artillery = new SPArtillery();

the new operator is used to create an artillery object (instance) of the SPArtillery

class. In OOP terminology, the object is instantiated. In OOP each object generally

consists of accessible functions, or methods, and data, or instance variables.

OOP allows one class to inherit the behavior, or methods and instance variables,

of another. The motivation for this modeling principle, commonly called inheritance,

includes reuse and abstracting common elements among classes. Other terms related to

inheritance are superclass, subclass, and extends. The class from which another class

inherits its functionality is called the superclass; the inheriting class is the subclass. Said

another way, the subclass extends the superclass. The notion of extending a class is

attractive because one is able to reuse the desirable behaviors of the superclass; at the

same time, one is able to add or change behaviors to adapt to changing needs or for the

purpose of specialization. To extend a class in Java, one uses the keyword extends.

For example, the line

public class DD21 extends NSFSShip {

says that the DD21 class inherits the behavior of the NSFSShip class.

Unlike some OOP languages, Java does not allow multiple inheritance. That is, a

Java class can extend only one class. However, Java provides the notion of an interface,

a powerful feature that affords the developer the ability to abstract common methods

 21

from more than one class. The interface construct in effect replaces multiple inheritance

of classes with multiple inheritance of interfaces. An interface, which contains no

concrete methods or variables of its own, is essentially a contract signed by any class that

implements it. The contract is to provide, or implement, every method in the interface.

The implementing class is free to decide the internal workings of those methods. For

example, NSFSSim uses a Weapon interface that consists of the following lines of code:

public interface Weapon {
 public double getMaxRange();
 public double getLethalRadius();
 public double getProbKill(Mover target);
 }

The NSFSWeapon class implements the Weapon interface by using the keyword

implements:

public class NSFSWeapon extends SimEntityBase implements Weapon {

This code promises that the NSFSWeapon class will have a getMaxRange method, a

getLethalRadius method, and a getProbKill method that takes a Mover object.

Mover itself is an interface implemented by the BasicMover class in Simkit.

2. The Listener Pattern

Java’s interfaces can be used to implement a “listener pattern,” another important

modeling principle utilized extensively in Simkit. Implementing classes use the

Listener interface for the purpose of handling events, specifically GUI events such as

mouse clicks. The idea here is that a model’s view should change in response to GUI

events. The listener pattern enables an interested “listener” to be notified of events as

they occur so that views may be modified accordingly. Java’s event handling mechanism

can be summarized in the following manner (Horstmann and Cornell, 1997):

 22

• A listener object is an instance of a class that implements a special
interface called (naturally enough) a listener interface.

• An event source is an object that can register listener objects and send
them notifications when events occur. These notifications are methods of
the listener interface.

A listener object is registered with the source object with the following general

line of pseudo-code:

 EventSourceObject.addEventListener(EventListenerObject);

Simkit applies the same event-notification pattern but emphasizes simulation events and

object state changes. Simkit’s listener pattern, likewise, is implemented with one line of

code:

 SimEventSource.addSimEventListener(SimEventListener);

In Simkit a SimEventListener object registered to a SimEventSource will be

notified of each SimEvent (a Simkit method with the prefix “do”) for which it has an

identical event. Suppose, for example, that a CounterBattery object named radar is

registered as a SimEventListener with an ArtilleryBattery object named

battery. The code would look something like this:

battery.addSimEventListener(radar);

Now suppose that the ArtilleryBattery class has a “FireRound” event constructed as

follows:

 public void doFireRound() {
 …internal code for this method
 }

If the radar instance wants to be notified of the battery’s “FireRound” event, the

CounterBattery class would have to have a method with exactly the same method

construction—that is, a public void doFireRound() method, in which the internal

 23

code may be different from that of the source method in the CounterBattery class.

Simkit’s implementation of the listener pattern enables efficient event handling within a

simulation model with little more than a few lines of code.

3. Third Party Components

 In addition to making extensive use of Simkit’s SimEventListener pattern,

NSFSSim borrows Simkit’s notion of third party components. Simkit provides a non-

partisan Referee class to adjudicate detections within a simulation. The Referee’s

tasks include maintaining a list of all targets and sensors and scheduling detections when

a Mover or a Sensor starts moving. Like Mover, Sensor is an interface. Generally

speaking, when the Referee determines that a target is within the range of a sensor, the

Referee by default creates a CookieCutterMediator instance that implements the

Mediator interface. In this manner, a mediator is created only when needed and is

responsible for adjudicating the actual interactions between a single sensor and a single

target.

Because movers and sensors should not be entrusted with the responsibility of

determining their own detections, the referee and mediators are created as third party

components to serve as honest brokers in the determination of sensor-target interactions.

Although NSFSSim does not utilize Simkit’s existing Referee and

CookieCutterMediator classes, it applies the same modeling principles to build

third party components to adjudicate the interactions between weapons and targets.

These components will be discussed at the end of the chapter.

 24

4. Manager Components

Whereas third party components are not allied with a particular side in a combat

simulation, manager components within NSFSSim are created with the express purpose

of directing the actions of a particular Mover implementation. The use of managers is a

practical application of object-oriented or component-based design. In its most

rudimentary form, a mover is responsible for executing movement events and reporting

its implicit state within the discrete-event paradigm. A mover’s manager serves in a

command and control capacity to direct the mover to its next location and schedule other

events that may be associated with the mover depending on its classification. For

example, an ArtilleryBatteryManager instance directs its subject artillery

battery to random locations on a two-dimensional battlefield and schedules

“StartEmplacement,” “EndEmplacement,” “FireRound,” “StartDisplacement,” and

“EndEmplacement” events for the artillery battery. From a design standpoint, using

manager components to separate basic movement functions from other actions is

desirable. Once again, this modeling concept serves to increase reusability and minimize

debugging time.

Having provided a brief introduction to the modeling principles and terminology

used in NSFSSim, we now turn to a description of the physical structure of NSFSSim and

the actual classes used to build the simulation model.

C. NSFSSIM STRUCTURE

NSFSSim consists of a Java package named “nsfssim,” an input data directory, an

icon directory that contains graphical images to populate the model’s views, a default

 25

output directory, and a help directory. Each set of simulated engagements may either be

viewed in the animation mode (Fig. 2), as a textual display of the event list, or in “silent”

mode; Appendix B discusses the creation of animation in NSFSSim. Pertinent data is

collected throughout and is written to a default text file in the output directory at the

conclusion of each set of runs.

Figure 2. NSFSSim’s Animation Mode

The animation mode provides a visual display of the running simulation. This screen
shot shows two DDG 51’s and one DD 21 on station conducting NSFS. A CG 47
cruiser is enroute to the ammunition onload rendezvous point to replenish its
ammunition inventory. Artillery batteries are depicted in the foreground. Those
rendered in red are at full strength. Any battery rendered in yellow is firing artillery
rounds. Each gray battery has had one or more of its guns destroyed. An explosion
indicates that at least one gun in a battery has just been destroyed. Once a battery has
had all its guns destroyed, it is removed from the screen (left explosion). The white
semi-circles depict ERGM (G) and LASM (M) fired from the surface combatants.

 26

Because NSFS is conducted by surface combatants whose stand off ranges

minimize their susceptibility to enemy counterattack, NSFSSim uses a predator-prey

design. That is, the NSFS ships within the model are “predators” that use tactical fires to

defeat enemy self-propelled and towed artillery batteries, the “prey.” As the names

imply, during the course of a simulated engagement, the ships are invulnerable, while the

artillery batteries invariably are attrited.

Although real-world threats pose formidable challenges in the realm of

simultaneity of missions, the thesis’ singular scope of investigating favorable NSFS

gun/missile firing policies obviated the need to model other mission areas. As such, no

enemy surface combatants, aircraft, or submarines were modeled. Furthermore, Marines

and Army troops, for which NSFS is designed to protect and empower, were omitted

from the model.

NSFSSim models such entities as the NSFS surface combatants of the next

decade, two of the advanced NSFS weapons that are being developed to advance 21st

century warfighting concepts, and two types of enemy field artillery batteries. The

movers exhibit simple linear motion and interact on a two-dimensional battlespace.

These simplifying assumptions are made possible due to the fact that ERGM and LASM

will use GPS assets only for precision guidance to each weapon’s respective aim point.

The weapons’ lack of active radar seekers precluded the necessity of modeling the target

acquisition process, which otherwise would have mandated the extension of the

battlespace to a third dimension and would have introduced the problem of weapon-target

geometry. The entities that will execute the firing policies that are being investigated in

this thesis are NSFSShip instances.

 27

D. NSFS SHIPS

Figure 3 illustrates the class hierarchy for NSFS ships in NSFSSim.

 Simkit

NSFSSim

CG47...
maximum speed,

number of ERGM,
number of LASM

DD21...
maximum speed,

number of ERGM,
number of LASM

DDG51...
maximum speed,
number of ERGM,
number of LASM

NSFSShip...
firing policy, stand off range,

target stale time,
ammunition onload time

BasicMover

 Figure 3. NSFSShip Component Hierarchy

The NSFSShip class extends Simkit’s BasicMover class.
CG47, DD21, and DDG51, in turn, subclass NSFSShip.
The italicized text within each box indicates modifiable
input parameters.

The NSFSShip class is the superclass for the surface combatants in NSFSSim.

NSFSShip itself extends the BasicMover class in Simkit. Therefore, each NSFS

ship inherits the behavior of a BasicMover. Specifically, each ship exhibits uniform

linear motion. Additionally, NSFSShip entities share the following user-specified

parameters: firing policy, stand off range, ammunition onload time, and target stale time

(i.e., the maximum time a target aim point can reside in the engagement queue before it is

deleted).

The software components used to model the surface combatants include the

DD21, DDG51, and CG47 classes, each extending NSFSShip (Fig. 3). While the names

of the ship classes may appear to be confining, some flexibility is provided to uniquely

 28

configure each ship type. Maximum ship speed as well as ERGM and LASM inventories

may be specified for each ship class. The model’s user may specify the creation of as

many of each of the surface combatants as he desires.

For each DD21, DDG51, and CG47 that is created, NSFSSim instantiates a

manager component, which is discussed in the following section.

E. NSFS SHIP MANAGERS

Each NSFSShip is controlled by an individual ShipManager instance. Based

on the firing policy, the manager directs the execution of its designated ship’s fire

mission. The firing policy is an independent “variable” specified by the user prior to a

set of runs. In NSFSSim, a firing policy consists of a sequence of characters, or a Java

String—g’s, G’s, m’s, M’s, l’s, and L’s are the only accepted characters—where a “g” or

a “G” represents a “ShootGun” event, an “m” or an “M” corresponds to a “ShootMissile”

event, and an “l” or an “L” schedules a “Look,” or kill assessment event. For example, to

specify a Shoot (missile), Look, Shoot (missile) firing policy, one would enter either the

String “mlm” or the String “MLM” in the NSFSShip firing policy field in NSFSSim’s

setup dialog (Fig. 4).

As long as the NSFSShip has sufficient numbers of ERGM and LASM

remaining to fully execute the firing policy, its ship manager will cause it to conduct

assigned NSFS missions. If, for instance, the promulgated firing policy was to fire three

ERGM followed by launching two LASM—“GGGMM”—at a given aim point, the

ShipManager would direct the firing of the specified sequence of rounds and missiles

using the ship’s available gun(s) and launcher(s). The user may specify the probability

 29

distributions that underlie the ShipManager class’ processing time and firing duration

between shots. The default times are derived from Uniform(a, b) distributions.

Figure 4. Specifying a Firing Policy

NSFSSim’s setup dialog allows the user to modify
parameters related to the histogram output, NSFSShip
properties, number of model entities, simulation controls,
and battlefield coordinates. This screen shot shows user-
selection of the NSFSShip tab and the highlighting of the
firing policy field. The String “MLM” indicates a Shoot
(missile), Look, Shoot (missile) firing policy.

Once a ship’s ERGM and/or LASM inventories are depleted below the level

necessary to carry out the firing policy, the corresponding ship manager directs the ship

to a user-specified ammunition onload rendezvous point. In actual combat conditions, a

surface combatant likely would expend all its munitions and missiles prior to departing

the operating area to replenish its ammunition. However, because this thesis only

investigates the implications of specific firing sequences on enemy artillery battery

effectiveness, NSFSSim in its present form disallows this eventuality. Future

applications, on the other hand, could easily alter this behavior by extending the

ShipManager class and rewriting a single method.

As would be the case in actual NSFS operations, the NSFSShip instance is

unavailable for fire missions during the time it takes the ship to complete the ammunition

 30

onload and return to station. Upon completion of the ammunition onload, the ship’s

ERGM and LASM inventories are reset to their initial levels. Back at its initial station,

the ship once again is available to execute NSFS missions received from the mission-

scheduling component, which will be discussed next.

F. NSFS MISSION SCHEDULING

Mission scheduling functionality resides within an instance of the

NSFSMission class. The scheduler’s logic in the present version is simple. From the

set of ships that are on station and within maximum weapons release range of a mission

aim point, the NSFSMission object randomly chooses a designated ship. This behavior

can be altered easily to incorporate more complex shooter assignment and scheduling

algorithms.

There are two major NSFS missions—counterbattery and call fire missions, both

of which must be highly responsive in order to protect troops in contact and enable

tactical maneuvers against the enemy. In the most general terms, a counterbattery

mission is one that is initiated by countertargeting radar that detects the firing of enemy

artillery rounds. Based on the trajectories of the artillery rounds, the radar system

calculates an estimate of the firing gun’s location. Engaged troops or forward observers

(FO), on the other hand, generally initiate call fire missions.

NSFSSim creates two objects that generate these NSFS missions. The

CounterBattery object is an instance of the CounterBattery class and

determines the need for counterbattery missions. The CallFire instance is created

from the CallFire class and generates call fire missions.

 31

1. Counterbattery Missions

NSFSSim’s CounterBattery object serves as a countertargeting radar. The

CounterBattery class does not implement Simkit’s Mover and Sensor interfaces;

as such, the CounterBattery instance does not possess coordinate locations or a

maximum sensor range. The CounterBattery instance relies solely on

probabilities—specifically, the probability that its radar is on and the probability of

detection—to determine the detection of individual artillery rounds.

Figure 5 depicts the logic flow for the generation of counterbattery missions. The

CounterBattery instance listens to the “FireRound” event of each enemy artillery

battery. As each round is fired, the CounterBattery object randomly checks for

counterbattery detection. A detection occurs if two randomly drawn numbers are,

respectively, less than the probability that the counter-targeting radar is active and the

conditional probability of detection. Both of the probabilities are user-defined

parameters. Given a detection, the CounterBattery instance generates a

counterbattery mission against the subject battery. Target location error (TLE) is applied

to the location of a randomly chosen gun within the battery to produce the mission aim

point. The TLE distributions are x-coordinate and y-coordinate errors. By default, the

distributions are Uniform(a, b), but this may be modified by the user.

 32

 Artillery battery
 executes a
 “FireRound” event

 Random draw
< P{radar on}?

 Random draw
 < P{detect}?

 Apply TLE to a
 randomly chosen
 gun in the battery

Generate counterbattery
mission w/ above aim pt

 No detectionYes

Yes

No

No

Figure 5. The Logic of Counterbattery Mission Generation

The random nature of NSFSSim’s counterbattery mission
generation is intended to simulate the uncertainty inherent in
combat. Clearly, a counterbattery mission initiated at the
beginning of a battery’s firing sequence has a better
probability of success than one that is queued by detecting
the last artillery round fired.

2. Call Fire Missions

The CallFire object generates calls for fire through an arrival process. The

user may change the probability distribution underlying the call for fire arrivals. By

default the probability distribution is Exponential(λ) so that the calls arrive according to a

 33

Poisson process. When a “CallForFireArrival” event occurs, the CallFire component

randomly chooses one of the guns of an artillery battery and applies TLE to that location.

At this point, the CallFire instance generates a call fire mission request with the

calculated mission aim point. The x-coordinate and y-coordinate TLE distributions in the

CallFire class are distinct from those in the CounterBattery class. As is the case

in the CounterBattery class, the default TLE distributions are Uniform(a, b), but

these too can be modified by the user.

Using the SimEventListener pattern, the requests for counterbattery and call fires

are heard by the NSFSMission scheduler. Once the mission scheduler makes an

assignment, the designated ship’s manager is notified of the assignment and directs the

execution of that mission. It is worth noting that, due to the randomness of the mission

generation methodology, NSFSShip objects will often fire at a moving artillery battery,

leading to the wasted expenditure of NSFS weapons.

The next section describes the component design of the targets of these NSFS

missions—the enemy artillery batteries.

G. ARTILLERY BATTERIES

Figure 6 illustrates the ArtilleryBattery component hierarchy. The

ArtilleryBattery class models enemy artillery batteries. Like the NSFSShip

class, this class subclasses BasicMover and is also extended by other

classesSPArtillery and TowedArtillery. Each artillery battery is instantiated

as a single mover. To model the battery characteristic, each instance has a vector of

coordinates representing the individual gun locations within the battery.

 34

 Simkit

NSFSSim

maximum speed
guns per battery
gun separation
gun salvo size
emplacement time
firing duration
displacement time
emergency displ time

SPArtillery...

maximum speed
guns per battery
gun separation
gun salvo size
emplacement time
firing duration
displacement time
emergency displ time

TowedArtillery...

ArtilleryBattery

BasicMover

Figure 6. ArtilleryBattery Component Hierarchy

The SPArtillery and TowedArtillery classes extend the
ArtilleryBattery class, which subclasses BasicMover. The
user-defined data parameters are shown. Note that the
italicized parameters represent probability distributions.

SPArtillery and TowedArtillery objects possess the same state

variables. However, the specification of these variables is left to the user. Therefore, the

characteristics of one battery type can be identical to that of the other, or as different as

the user desires them to be. Realistically, the performance and vulnerability

characteristics should be different. It is generally accepted that SPA gun systems are

more capable and less vulnerable than towed guns.

Future SPA systems, such as the U.S. Army’s developmental 155mm Crusader

self-propelled howitzer XM2001, will possess state-of-the-art system survivability

enhancement features. Most importantly, these weapon systems will possess increased

mobility, speed, and firepower over today’s field artillery systems. Automated

rearmament—to include projectiles, charges, fuel, water, and lubricant—will increase

 35

crew survivability by keeping the crew under armor, enabling continued availability for

missions. (Foss, 1998)

Towed artillery systems, as the name implies, are less mobile than SPA systems.

Reduced mobility on the battlefield equates to reduced survivability. Moreover, towed

artillery guns do not enjoy the armored protection usually found on SPA weapons.

Compounding this vulnerability is the higher manning level required to operate and

maintain the towed systems.

In the execution of fire missions, however, SPA and towed artillery systems share

common functionalities. NSFSSim structures artillery missions as a sequence of

variable-time events:

• Movement to the geographic firing location

• Emplacement (i.e., preparations made prior to firing such as positioning

spades and shooting azimuths)

• Firing of artillery rounds (the model assumes that each battery has an

infinite ammunition inventory)

• Displacement (i.e., preparations made in advance of movement such as

gun stowage for travel)

• “Scoot” (i.e., movement to a new location in avoidance of counterfire)

If, after emplacement, an artillery battery loses one or more of its guns to NSFS weapons

fire, it immediately conducts a hastened, emergency displacement and scoots to a new

location. The artillery battery in this case is deemed to be in distress and is unavailable to

 36

conduct fire missions until it ends its “Scoot” event. The time it takes to conduct the

emergency displacement as well as the above listed events are random times taken from

probability distributions. Once again, the user may modify these distributions; by

default, they are Uniform(a, b).

 As is the case with the NSFS ships, each artillery battery is controlled by a

manager component, which will be discussed next.

H. ARTILLERY BATTERY MANAGERS

The ArtilleryBatteryManager class provides the template for the

creation of manager components that direct the missions of individual artillery batteries.

To allow for future specialization, this class is subclassed by SPArtilleryManager

and TowedArtilleryManager. Each manager instance is responsible for directing

fire missions, as defined in the previous section. In controlling movement events, the

managers choose uniform random locations on the two-dimensional battlefield, taking

into account the stand off range of the surface combatants.

The actual firing sequence scheduled by a manager component depends on a

number of factors. The number of “FireRound” events executed during an uninterrupted

fire mission is determined by multiplying the number of surviving guns in the battery by

the individual gun salvo size. The user may specify the salvo size, which by default is

four rounds. The duration of the firing sequence is also dependent on the gun’s rate of

fire as defined by a firing duration probability distribution. This, too, can be modified by

the user, the default being Uniform(a, b). The emplacement and displacement events that

 37

are conducted, respectively, prior to and following the firing sequence are merely time

delays placed on and removed from the event list.

Artillery battery fire missions are generated in a similar fashion to call fire

missions. NSFSSim’s user is expected to provide an arrival probability distribution for

each of the two artillery battery types. The default mission arrival process for both

battery types is the Poisson process. Fire mission generation and assignment are the

responsibility of a single instance of the EnemyMission class. This object uses simple

queuing theory to decide the assignments. When a towed artillery mission arrival occurs,

for example, the EnemyMission instance assigns the mission to the

TowedArtillery object with the smallest mission queue. Using the listener pattern,

each ArtilleryBatteryManager object listens for these fire mission assignment

events. The longer the artillery batteries remain in one location emplacing, firing rounds,

and displacing, the bigger the window of opportunity for the NSFS weapons to achieve

battery kills.

The next section discusses the components that model developmental NSFS

precision munitions and missiles.

I. NSFS WEAPONS

The NSFSWeaponMover component hierarchy is depicted in Figure 7. The

Weapon interface, introduced in Section B, provides methods for obtaining a weapon’s

maximum range, lethal radius, and probability of kill (PK) against a given Mover object.

The NSFSWeaponMover class extends BasicMover and implements the Weapon

 38

interface. The ERGMMover and LASMMover classes extend NSFSWeaponMover and

represent developmental precision-guided NSFS munitions and missiles, respectively.

 Simkit

NSFSSim

maximum speed
lethal radius
maximum range 1
maximum range 2
PKs vs SPA
PKs vs towed artillery
x-coordinate error
y-coordinate error

ERGMMover...

maximum speed
lethal radius
maximum range 1
maximum range 2
PK vs SPA
PK vs towed artillery
x-coordinate error
y-coordinate error

LASMMover...

NSFSWeaponMover

BasicMover

Figure 7. NSFSWeaponMover Component Hierarchy

The ERGMMover and LASMMover classes extend the
NSFSWeaponMover class, which subclasses BasicMover.
The user-defined data parameters are shown. The italicized
parameters denote probability distributions.

An ERGMMover object is created each time a ship manager schedules a

“ShootGun” event. Similarly, a “ShootMissile” event instantiates a LASMMover object.

Each NSFSWeaponMover instance possesses the following modifiable parameters:

maximum speed, lethal radius, maximum range 1 (used if the weapon is fired from a

CG47 or DDG51 instance), maximum range 2 (in the case that the weapon is fired from a

DD21 instance), x-coordinate error probability distribution, and y-coordinate error

probability distribution.

 39

ERGMMover and LASMMover instances also have user-specified, lethal radius-

dependent PK values against SPArtillery and TowedArtillery instances.

Because LASM is planned to contain a unitary warhead, the model allows the

specification of only one lethal radius for the LASMMover class. The value of this lethal

radius must match exactly the lethal radius specified to obtain the PK value against each

artillery type. On the other hand, ERGM will feature a variable dispense diameter

capability. The achievable dispense diameters will be 20 m, 40 m, 60 m, 80 m, and 100

m. Accordingly, NSFSSim provides the user the capability of specifying five different

PK values for each of the two artillery battery types. Once again, for each battery type,

the ERGMMover class’ specified lethal radius must match one of the values required to

obtain the PK values.

Each instantiation of an NSFSWeaponMover instance is accompanied by the

creation of a weapon manager component. The NSFSWeaponManager class serves to

control the flight of individual weapons and is subclassed by the ERGMManager and

LASMManager classes. These managers are responsible only for applying weapon

errors to the given aim point and then directing the specified weapon to the newly

adjusted coordinates. At the end of a weapon’s flight, a “WeaponImpact” event occurs.

This event is heard by a third party component called the NSFSReferee.

J. NSFS REFEREE AND WEAPON TARGET MEDIATORS

The NSFSReferee object maintains registries of all the entities created at

simulation run time. As NSFS ships, artillery batteries, and weapons change states, they

may register or unregister with the referee. For example, when all of the guns in an

 40

artillery battery are destroyed, the battery permanently unregisters, becoming unavailable

to conduct fire missions or to be the target of NSFS missions. Similarly, when a

NSFSShip instance departs to replenish its ammunition inventories, it unregisters with

the NSFSReferee so that it becomes unavailable for NSFS mission assignments. The

NSFSShip is added back to the ship registry when it returns to station.

In addition to performing this bookkeeping function, the referee works with a

WeaponTargetMediator instance to adjudicate NSFSWeaponMover hits and

misses. Each time the referee hears a “WeaponImpact” event, it directs an instance of the

WeaponTargetMediator class to mediate the outcome of the weapon’s impact.

The WeaponTargetMediator instance checks all of the gun locations of each

registered ArtilleryBattery object. NSFSSim’s BatteryFormation class is

responsible for computing the actual gun locations. Given a user-specified gun

separation value, each BatteryFormation instance positions an artillery battery’s guns in a

“Lazy W” pattern, the orientation of which is randomly decided at run time. As the name

implies, the Lazy W pattern is a configuration in which the guns appear to form one or

more linked “W’s.” This formation is commonly used to organize U.S. Army field

artillery batteries, which nominally consist of six guns (Fig. 8). Figure 9 describes the

logic flow for the adjudication of weapon-target interactions.

 41

Figure 8. Typical “Lazy W” Battery Formation

This figure illustrates a typical battery formation consisting of six SPA guns
dispersed over a 100 m x 300 m area. The circle shows the dispense
diameter around the impact point of one ERGM round. In this case, the
WeaponTargetMediator would conduct two independent, random draws to
determine the kill assessments for the two guns located within the round’s
lethal area.

 42

“WeaponImpact”

 Mediator gets
 next battery

 Dist from gun
 to impact pt <
 lethal radius?

 Random draw
< weapon pK v.
 artillery type?

Yes

Yes

 Gun destroyed
 (Kill count ++)

 More guns
 in battery?

Yes

No

No

No

 Another
 battery ?

Yes

 Kill
 count == 0 ?

 Weapon miss

Yes

No
 End mediation

No

Figure 9. WeaponTargetMediator Logic

An artillery gun that lies within the destructive pattern of an NSFS
weapon is destroyed with a certain probability of kill.

 43

For those guns that lie within the lethal radius of the NSFSWeaponMover’s

impact point, the mediator conducts an independent random draw to determine hit or

miss. If the random draw is less than the NSFSWeaponMover’s PK value, for the

specified lethal radius, against the particular artillery type, the mediator determines that a

gun is destroyed. As mentioned previously, the determination of one of more gun kills

while a battery is stationary causes the battery to conduct an emergency emplacement.

The mediator performs this check for each registered artillery battery.

Having completed an overview of NSFSSim’s simulation components, Chapter

III will summarize the analysis using NSFSSim.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

III. ANALYSIS USING NSFSSIM

The previous chapters discussed the rationale behind the creation of NSFSSim as

well as the modeling principles and components that provide the framework for the

simulation model. This chapter summarizes the type of analysis that can be conducted

using NSFSSim and briefly describes the use of the model. Recall that NSFSSim was

constructed to analyze two specific problems:

1) Determine the best firing policy for ships conducting NSFS against mobile
targets.

2) Determine the most effective ERGM dispense diameter against a given mix of

artillery batteries.

Before describing the scenario used to analyze these issues, it is necessary first to discuss

NSFSSim’s relevant Measures of Performance (MOP) and the selection of an appropriate

Measure of Effectiveness (MOE).

A. MEASURES OF PERFORMANCE

NSFSSim collects pertinent MOP data during each set of runs. These measures

include:

• The average number of SPA missions conducted

• The average number of towed artillery missions conducted

• The average number of counterbattery missions conducted

• The average number of call fire missions conducted

 46

• The average number of artillery rounds fired

• The average number of ERGM fired

• The average number of LASM launched

• The average number of SPA guns destroyed

• The average number of towed artillery guns destroyed

• The average number of SPA batteries destroyed

• The average number of towed artillery batteries destroyed

From this set of values, one can formulate several MOE alternatives to measure NSFS

ship firing policy effectiveness against the artillery batteries. Obvious choices include

analysis of alternatives (AOA), attrition-type measures such as the average number of

total artillery guns destroyed divided by the number of NSFS weapons fired or, similarly,

the average number of total artillery batteries destroyed divided by the number of NSFS

weapons fired. Another MOE alternative is simply the average number of rounds fired

by the enemy artillery batteries.

B. MEASURE OF EFFECTIVENESS SELECTION

The most appropriate MOE to measure the effects of firing policy changes on

enemy artillery battery effectiveness appears to be the last alternative mentioned, the

average number of rounds fired by the enemy artillery. An assumption in NSFSSim is

that the destruction of at least one gun in a stationary artillery battery will cause the

 47

battery to conduct an emergency displacement and move to a new location on the

battlefield. All other events including the firing of artillery rounds are interrupted as a

result of the emergency displacement. Therefore, an artillery battery that spends most of

its time scooting to new locations will not fire as many rounds as one that remains mostly

free from the harassment of effective NSFS weapon employment. Within this context, a

truly effective firing policy is one that causes artillery batteries to scoot before they are

able to fire their rounds. Having selected an appropriate MOE, the next section will

describe the scenario used in the preliminary analysis using NSFSSim.

C. SCENARIO DESCRIPTION

The resolution of NSFSSim in its present state is limited, and actual data

necessary to populate the model is either classified or unknown. As such, the scenario

constructed to address the problems of firing NSFS weapons against mobile targets is a

notional one using open source data. However, the scenario is reasonable for the

purposes of this thesis and yields some useful insights.

The scenario is a seventeen-hour battle consisting of four surface combatants—

two Aegis destroyers, one Aegis cruiser, and one 21st Century destroyer—conducting

counterbattery and call fire missions against an even mix of six SPA batteries and six

towed artillery batteries. The guns in each battery have a lateral separation of

approximately 100 m, and each gun fires four rounds during an uninterrupted mission.

The battlefield is a 230 nm by 65 nm rectangular region. The NSFS ships stand off 25

nm from the coast line, and the artillery batteries maneuver no closer than 15 nm to the

coast. Therefore, LASM and ERGM, with speeds of mach 2.0 and mach 0.9,

 48

respectively, must travel at least 40 nm to their aim points. The ship magazines are

loaded such that, during the course of the seventeen-hour scenario, each ship likely will

go off line to replenish its ammunition inventory at least once or twice. Each ammunition

onload event lasts three hours, and it is assumed that there is no upper bound on the

number of onload events that can occur simultaneously. The onload rendezvous point is

located such that traversal times to and from the point equate to an additional hour of off

station time for the replenishing ships.

 SPA battery missions arrive more frequently than towed artillery missions. While

both artillery battery types have a speed of 45 kph, SPA batteries on average have shorter

dwell times than do the towed artillery batteries. In addition, by virtue of the NSFS

weapon PK values against the artillery types, the SPA batteries are less vulnerable to

destruction than are the towed types.

 The next sections discuss some preliminary analysis using the NSFSSim model.

D. FIRING POLICY INVESTIGATION

A set of 100 runs without NSFS missions was conducted to establish a baseline

measure of average rounds fired when artillery batteries are not targeted. Figure 10

shows the corresponding NSFSSim histogram for the number of artillery rounds fired.

Figure 11 is a screen shot of NSFSSim’s text editor showing the pertinent summary

statistics of the baseline scenario. When no NSFS weapons are fired at the artillery

batteries, the batteries fire on average 1355 rounds during a seventeen-hour period.

 49

 Figure 10. Baseline Histogram of Artillery Rounds Fired

If the histogram option is enabled in NSFSSim, the user is
prompted to specify one of seven statistics to be graphed
in a histogram that can be displayed at the end of a set of
runs. This screen shot shows a histogram of the number of
artillery rounds fired during 100 runs in which no NSFS
weapons are fired.

 50

Figure 11. NSFSSim’s Text Editor

NSFSSim’s text editor can open, modify, and save any text file.
At the conclusion of a set of runs, the user can open the default
output file and read the pertinent data for the completed runs.
This screen shot shows the default file for the baseline scenario
in which no NSFS weapons are fired. Note that on average 41
SPA missions and 27 towed artillery missions are conducted
when the artillery batteries are unharassed.

The first firing policy tested was a sequence of five ERGM followed by three

LASM, or “GGGGGMMM.” The ERGM dispense diameter was set at 60 m. This

scenario was performed 100 times. Figures 12 and 13 show the text editor frame and

histogram frame, respectively, for this particular scenario.

 51

Figure 12. Firing Policy GGGGGMMM

During each counterbattery or call fire mission, each surface
combatant fired five ERGM and launched three LASM in
executing this firing policy. The times between the weapon
firings were drawn from the specified firing duration distribution.
With this firing policy the average number of artillery rounds
fired was reduced from the baseline level to approximately 729
rounds during each seventeen-hour battle.

 52

Figure 13. Histogram for GGGGGMMM Firing Policy

This screen shot shows the corresponding histogram of the
number of artillery rounds fired when the NSFS ships used a
GGGGGMMM firing policy. The mean value obtained by
performing 100 runs was approximately 729 rounds.

The next firing policy examined was also a sequence of five ERGM and three

LASM. This time, however, the missiles were launched prior to the firing of the

precision roundsa MMMGGGGG firing policy—to determine whether or not the order

of the weapons fired has an effect on the effectiveness of the enemy artillery batteries.

This scenario was performed for a set of 100 trials. With this firing policy, the average

number of artillery rounds fired was approximately 692 rounds. Figures 14 and 15,

respectively, show the default output file and histogram for this firing policy

implementation.

 53

Figure 14. Firing Policy MMMGGGGG

By launching the missiles first, the NSFS ships improved upon
the MOE that was achieved by firing ERGM rounds first. The
number of artillery rounds fired during each run using the
MMMGGGGG firing policy on average was approximately 692
rounds.

 54

Figure 15. Histogram for MMMGGGGG Firing Policy

For this firing policy, the mean number of artillery rounds
fired during each simulation run was 692.31 rounds. As
before, the histogram was produced by conducting 100
simulation runs.

From the previous observations, it appeared that launching LASM, which is faster

and more lethal than ERGM, earlier in the firing sequence decreased the effectiveness of

the artillery batteries. Further testing with different numbers of missiles and munitions

but the same structure yielded similar results. In order to determine if the differences in

the mean number of rounds fired using the GGGGGMMM and the MMMGGGGG firing

policies is statistically significant, a two-sample t-test was performed. The t-test was

deemed appropriate because of the relatively large sample sizes involved and because the

histograms showed comparable sample variances. The t-test produced a p-value of

0.0276. Therefore, at a significance level of 0.05, it was concluded that the true mean

values are significantly different. This result was not surprising because the

 55

responsiveness of NSFS weapons is tremendously important to the success of NSFS

missions.

Somewhat surprising were the results for a MMGGGG firing policy. That is, two

LASM and four ERGM per NSFS mission on average resulted in the firing of fewer

artillery rounds by the enemy batteries. The output from 100 runs using this firing policy

are shown in Figures 16 and 17.

Figure 16. Firing Policy MMGGGG

This firing policy on average resulted in the artillery batteries’
firing of approximately 669 artillery rounds per simulation run.
Therefore, the selected MOE showed an improvement when the
ships used six weapons instead of eight weapons as in the
MMMGGGGG firing policy.

 56

 Figure 17. Histogram for MMGGGG Firing Policy

Repeated for 100 simulation runs, the MMGGGG firing policy resulted in an average
of 669.20 artillery rounds fired by the artillery batteries during each battle.

The improvement in the MOE using fewer weapons may be attributable to the

fact that firing more weapons each mission will force the surface combatants to depart

their stations earlier and more often to take on more ammunition. This is a likely causal

factor because the seventeen-hour scenario specifies an offstation time of four hours,

during which time the replenishing ship is unavailable for counterbattery and call fire

missions.

The next section presents a brief synopsis of preliminary analysis using different

ERGM dispense diameters.

 57

E. VARYING ERGM DISPENSE DIAMETER

The next question addressed in the study was whether an optimal ERGM dispense

diameter existed for the given mix of artillery batteries in the scenario. In this analysis

the MMMGGGGG and MMGGGG firing policies were used once again. For each set of

100 runs implementing one of the two specified firing policies, the ERGM dispense

diameter was varied from 20 to 100 m in increments of 20 m (runs using a 60 m dispense

diameter were completed for the previous analysis). Figure 18 shows the results of the

ten sets of runs.

20 40 60 80 100
MMGGGG

MMMGGGGG

620

660

700

740

780

Mean # Artillery
Rounds Fired

Dispense Diameter (m) Firing Policy

Varying ERGM Dispense Diameter

Figure 18. Effect of Varying ERGM Dispense Diameter

The plot shows that for this particular scenario an ERGM dispense diameter of 80 m
on average resulted in the best results for MMGGGG and MMMGGGGG firing
policies. That is, the enemy artillery batteries on average fired fewer rounds when the
surface combatants used an ERGM dispense diameter of 80 m.

 58

This analysis revealed that, despite higher associated PK values, small dispense

diameters produced unfavorable results against dispersed mobile targets. Both a 60 m

and 80 m ERGM dispense diameter resulted in marked improvements in the MOE, with

the latter diameter fairing slightly better. A 100 m dispense diameter, although providing

a larger lethal area, tended to be less effective due to smaller associated PK values.

Different firing policy implementations yielded similar results.

This type of analysis could be extended easily to incorporate different mixes of

SPA and towed artillery batteries or to include sensitivity analysis using varying battery

characteristics. Clearly, the analysis conducted in this thesis is only preliminary and

further analysis with more detailed models using “real” data is required. However, the

analysis revealed some useful insights and emphasized the need for further model

development and research.

 59

IV. CONCLUSIONS AND RECOMMENDATIONS

A. THE NEED FOR ANALYSIS

This thesis has demonstrated the need for continued analysis in the area of tactical

employment of advanced NSFS weapons. While the development of such sophisticated

weapons as ERGM and LASM has proceeded with the momentum of adequate funding,

weapons systems integration and tactical considerations remain at the conceptual stages.

Compared to the relatively low cost of today’s 5 inch rounds, these advanced weapons

will be quite costly. Therefore, efficient utilization of these weapons in support of NSFS

is an important issue. Moreover, the emergence of more capable, more mobile enemy

weapons systems demands that these NSFS weapons be optimally employed. The Naval

Surface Fire Support Simulation (NSFSSim) model has yielded some useful insights into

the question of NSFS gun and missile employment against mobile targets, but further

analysis using more complex models is required.

B. DEVELOPMENT OF NSFSSIM

Some studies addressing NSFS issues have used successfully a consortium of

combat models to capture the complexities of the Joint land battle. However, due to the

rigid design of these simulation models, major modification to existing code generally is

required to enable the models to work together. This thesis pursues a one model

approach, creating a new simulation model (NSFSSim) that features substantial

flexibility such that it can operate on any hardware platform, can be extended easily to

 60

provide greater resolution, and can be modified readily for future applications. NSFSSim

is an analysis tool that allows the user to make changes to input parameters and run

simulations without the burden of rewriting and recompiling any source code. In its

present form, NSFSSim provides methods for analyzing the effectiveness of different

firing sequences as well as the effectiveness of various ERGM dispense diameters.

C. RECOMMENDATIONS FOR FURTHER ANALYSIS

Preliminary analysis using NSFSSim reaffirms the importance of the

responsiveness, range, and lethality of NSFS weapons employed against mobile, short

dwell time targets. In particular, launching LASM early in a firing sequence is on

average a better policy than launching the missiles after the ERGM rounds are fired.

Additionally, setting the ERGM dispense diameter at 60 m or 80 m generally produces

the best results against dispersed, mobile units. To be sure, these preliminary findings

should be tested against other scenarios. In its present form, NSFSSim could be used to

investigate the effectiveness of MRSI tactics against artillery batteries. By setting the

firing duration to 0.0 and using the same speed for all of the weapons, all of the weapons

fired for a particular NSFS mission would impact at the same time.

Further analysis with a more complex version of NSFSSim and “real” data is

necessary to gain more insights into the problem of NSFS gun/missile firing policy.

NSFSSim should be extended to use entities that exhibit more realistic movement.

Sensors could be modeled as actual entities. Enemy artillery batteries could be modeled

with the capability of utilizing countermeasures and decoy tactics. Furthermore, the

 61

challenges facing surface combatants in the littorals should be modeled. Some of these

challenges include land-based aircraft, land and sea-based missile systems, and mines.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

APPENDIX A: DATA STRUCTURES IN NSFSSIM

All of the input data in NSFSSim is stored within “ini” files in the data directory.

The structure of an “ini” file lends itself to the creation of a data base in the form of a

Hashtable of Hashtables, or a Hashtable2 instance. The file “setup.ini” used in

NSFSSim shows the typical structure of an “ini” file:

[NSFSShip]
firingPolicy = mmgggg
standOffRange = 130.0
yCoordOffset = 250.0
targetStaleTime = 0.0833
ammoOnloadTime = 3.0

[NumberEntities]
nsfssim.CG47 = 1
nsfssim.DD21 = 1
nsfssim.DDG51 = 2
nsfssim.SPArtillery = 6
nsfssim.TowedArtillery = 6

[AreaCoordinates]
lowerLeftX = 0.0
lowerLeftY = 0.0
upperRightX = 750.0
upperRightY = 480.0

[UnrepCoordinates]
xCoord = 418.0
yCoord = 250.0

[Simulation]
numberOfRuns = 100
stopTime = 17.0
stopWhenTgtsDead = false
singleStep = false
verbose = false

[Histogram]
leftValue = 400.0
rightValue = 1000.0
numberOfCells = 15

 64

As illustrated by “setup.ini,” a block of related data is specified by []. Within

each block, there exists any number of key-value pairs (e.g., firingPolicy = mmgggg).

The Hashtable2 class converts an “ini” file into a Hashtable of Hashtables so that one

can access the value of a particular key-value pair by specifying the block and the key.

NSFSSim provides a GUI that allows the user to modify and save the values within five

“ini” files. Hashtable2 and the classes that build this GUI are listed here:

// The Hashtable2 class

package nsfssim;

import java.util.*;
import java.io.*;
import java.net.*;

public class Hashtable2 extends Properties {

// constructors
 public Hashtable2() {
 super();
 }

 public Hashtable2(Properties prop) {
 super(prop);
 }

 public Hashtable2(URL url) {
 super();
 this.load(url);
 }

 public Hashtable2(File file) {
 super();
 this.load(file);
 }

// instance methods
 public void put(Object firstKey, Object secondKey, Object value) {
 Hashtable values;
 if (this.containsKey(firstKey)) {
 values = (Hashtable) this.get(firstKey);
 }
 else {
 values = new Hashtable(10);
 this.put(firstKey, values);

 65

 }
 values.put(secondKey, value);
 }

 public Object get(Object firstKey, Object secondKey) {
 Hashtable values;
 Object returnValue = null;
 if (this.containsKey(firstKey)) {
 values = (Hashtable) this.get(firstKey);
 returnValue = values.get(secondKey);
 }
 return returnValue;
 }

 public void load(String fileName) {
 File file = new File(fileName);
 if (file.exists()) {
 this.load(file);
 }
 else {
 throw new IllegalArgumentException("File " + fileName + " not
 found.");
 }
 }

 public void load(URL file) {
 this.load(new File(file.getFile()));
 }

 public void load(File file) {
 int lineNumber = 0;
 try {
 FileReader instream = new FileReader(file);
 BufferedReader input = new BufferedReader(instream);

 StringTokenizer tokens = null;
 Properties currentBlock = new Properties();
 String currentBlockName = "";
 for (String nextLn = input.readLine(); nextLn != null; nextLn
 = input.readLine()) {
 lineNumber++;
 if (nextLn.startsWith(";") || nextLn.startsWith("#")) { }
 else if (nextLn.startsWith("[") && nextLn.endsWith("]")) {
 tokens = new StringTokenizer(nextLn, "[]");
 if (tokens.countTokens() == 1) {
 currentBlockName = tokens.nextToken();
 currentBlock = new Properties();
 this.put(currentBlockName, currentBlock);
 }
 else {
 throw new RuntimeException(" on line " + lineNumber
 + ":\n" + nextLn + "[# tokens = " +
 tokens.countTokens() + "]");
 }
 }
 else {

 66

 tokens = new StringTokenizer(nextLn, "=");

 switch (tokens.countTokens()) {
 case 0:
 break;
 case 1:
 currentBlock.put(tokens.nextToken().trim(), "");
 break;
 case 2:
 currentBlock.put(tokens.nextToken().trim(),
 tokens.nextToken().trim());
 break;
 default:
 throw new RuntimeException (
 "Improper format in " + file + " on line " +
 lineNumber +":\n" + nextLn + "[# tokens = " +
 tokens.countTokens() + "]");
 }
 }
 }
 input.close();
 }
 catch (FileNotFoundException e) {System.err.println(e);
 e.printStackTrace(System.err);}
 catch (IOException e) {System.err.println(e);
 e.printStackTrace(System.err);}
 }

 public Object put(Object key, Object value) {
 if (value instanceof Map) {
 return super.put(key, value);
 }
 else {
 throw new IllegalArgumentException("Hashtable2 can only accept
 Maps as values.");
 }
 }

}

// The INIFileEditor class

package nsfssim;

/**
 * This class edits an INI file.
**/

import java.io.*;
import java.util.*;
import javax.swing.*;

public class INIFileEditor {

 67

// instance variable
 private File file;
 private JFrame frame;

// constructor
 public INIFileEditor(File fileName, JFrame f) {
 file = fileName;
 frame = f;
 this.editFile(file);
 }

// instance method
 public void editFile(File file) {
 INIFileReader reader = new INIFileReader(file);
 JTextField[] fields = reader.getValueFields();
 JPanelDialog d = new JPanelDialog(frame, file.toString(), true,
 reader, fields, null);
 d.show();
 if (d.getValue() != null) {
 StringTokenizer tokens = new StringTokenizer(d.getValue());
 if (tokens.countTokens() == ((String[])
 reader.getValueNames()).length) {
 String[] values = new String[tokens.countTokens()];
 int k = 0;
 while (tokens.hasMoreTokens()) {
 values[k] = tokens.nextToken().trim();
 k++;
 }
 new INIFileWriter(reader.getFileName(),
 reader.getTabNames(), reader.getSubCounter(),
 reader.getValueNames(), values);
 }
 }
 d.dispose();
 return;
 }

}

// The INIFileReader class

package nsfssim;

import simkit.util.*;

import java.io.*;
import java.util.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class INIFileReader extends JPanel {

 68

 private INIFileProperties fileINI;
 private String fileName;
 private JTabbedPane pane;
 private JPanel[] tabs;
 private String[] tabNames;
 private String[] valueNames;
 private String[] values;
 private JTextField[] valueFields;
 private int counter;
 private Integer[] subCounter;
 private int subTotal;
 private int valueCounter;

/**
 * Creates an INIFileReader that sorts the keys of the INI file
 * into tabbed Panes and JLabels and allows the values to be
 * changed.
**/
 public INIFileReader(File file) {
 counter = 0;
 subTotal = 0;
 valueCounter = 0;
 pane = new JTabbedPane();
 Properties prop = null;
 fileName = file.toString();
 fileINI = new INIFileProperties();
 fileINI.load(fileName);

 tabNames = new String[fileINI.size()];
 tabs = new JPanel[fileINI.size()];
 subCounter = new Integer[fileINI.size()];
 for (Enumeration e = fileINI.keys(); e.hasMoreElements();) {
 Object key = e.nextElement();
 tabNames[counter] = key.toString().trim();
 tabs[counter] = new JPanel();
 try {
 prop = (Properties) fileINI.get(key);
 subCounter[counter]= new Integer(prop.size());
 subTotal += subCounter[counter].intValue();
 }
 catch (ClassCastException ex) {System.err.println(ex);}
 catch (NullPointerException ex) {System.err.println(ex);}
 counter++;
 }
 counter = 0;
 valueNames = new String[subTotal];
 values = new String[subTotal];
 valueFields = new JTextField[subTotal];
 for (Enumeration e = fileINI.keys(); e.hasMoreElements();) {
 Object key = e.nextElement();
 tabs[counter].setLayout(new GridBagLayout());
 GridBagConstraints c = new GridBagConstraints();
 c.insets = new Insets(3, 3, 3, 3);
 c.gridx = GridBagConstraints.RELATIVE;
 c.gridy = 0;

 69

 try {
 prop = (Properties) fileINI.get(key);
 int i = 0;
 for (Enumeration en = prop.keys(); en.hasMoreElements();) {
 Object key2 = en.nextElement();
 valueNames[valueCounter] = key2.toString().trim();
 values[valueCounter] = new
 String(prop.get(key2).toString().trim());
 valueFields[valueCounter] = new JTextField(22);
 valueFields[valueCounter].setForeground(Color.black);
 valueFields[valueCounter].setText(values[valueCounter]);
 if (i != 0 && i%2 == 0) {
 c.gridy++;
 }
 JLabel label = new JLabel(valueNames[valueCounter]);
 label.setForeground(Color.blue);
 tabs[counter].add(label, c);
 tabs[counter].add(valueFields[valueCounter], c);
 i++;
 if (i> subCounter[counter].intValue()){
 i =0;
 }
 valueCounter++;
 }
 pane.addTab(tabNames[counter], tabs[counter]);
 counter++;
 }
 catch (ClassCastException ex) {System.err.println(ex);}
 catch (NullPointerException ex) {System.err.println(ex);}
 }
 this.add(pane);

 }
 public String getFileName() {return fileName;}
 public String[] getTabNames() {return tabNames;}
 public String[] getValueNames() {return valueNames;}
 public String[] getValues() {return values;}
 public Integer[] getSubCounter() {return subCounter;}
 public JTextField[] getValueFields() { return valueFields; }

}

// The INIFileWriter class
package nsfssim;
/**
 * This class writes an INI file.
**/
import java.io.*;
import java.util.*;
import javax.swing.*;

public class INIFileWriter {

 70

// instance variables
 private String fileName;
 private Properties hash;

// constructors
 public INIFileWriter(String file, String[] bracket, Integer[]
 keyNums, String[] keys, String[] values) {
 hash = new Properties();
 Properties hash2;
 fileName = file;
 String nullString = null;
 int k = 0;
 for (int i =0; i < bracket.length; i++) {
 hash2 = new Properties();
 for (int j = 0; j < keyNums[i].intValue(); j++) {
 hash2.put(keys[k], values[k]);
 k++;
 }
 hash.put(bracket[i], hash2);
 }
 this.checkFile();
 }

 public INIFileWriter(String file, Properties prop) {
 hash = (Properties) prop.clone();
 fileName = file;
 this.checkFile();
 }

// instance methods
 public void checkFile() {
 File file = new File(fileName);
 if (file.exists()) {
 JFrame f = new JFrame("Overwrite?");
 int result = JOptionPane.showConfirmDialog(f,
 new String("Save " + file.toString() + "?"), "Save File",
 JOptionPane.YES_NO_OPTION);
 if (result == JOptionPane.YES_OPTION) {
 f.dispose();
 this.makeFile();
 this.showSavedMessage();
 }
 else {
 f.dispose();
 }
 }
 }

 public void makeFile() {
 StringBuffer buf = new StringBuffer();
 try {
 PrintWriter printOut = new PrintWriter(new
 FileWriter(fileName));
 Properties prop = null;
 for (Enumeration e = hash.keys(); e.hasMoreElements();) {
 Object key = e.nextElement();

 71

 buf.append('\n');
 buf.append('[');
 buf.append(key.toString());
 buf.append(']');
 buf.append('\n');
 try {
 prop = (Properties) hash.get(key);
 for (Enumeration f = prop.keys(); f.hasMoreElements();)
 {
 Object key2 = f.nextElement();
 Object value2 = prop.get(key2);
 buf.append(key2.toString());
 buf.append(" = ");
 if (value2 != null){
 if (value2.toString().equals("null")) {}
 else {
 buf.append(value2.toString());
 }
 }
 buf.append('\n');
 }
 }
 catch (ClassCastException ex)
 {buf.append(hash.get(key).toString());}
 catch (NullPointerException ex) {}
 }
 printOut.print(buf);
 printOut.flush();
 printOut.close();
 }
 catch (IOException e) { System.out.println(e);}
 }

 public void showSavedMessage() {
 JFrame f = new JFrame("Saved");
 JOptionPane.showMessageDialog(f, new String("File " + fileName +
 " saved."), "Save Complete", JOptionPane.INFORMATION_MESSAGE);
 f.dispose();
 }

 public String getName() {
 return fileName;
 }

}

// The JPanelDialog class
package nsfssim;

import simkit.util.*;

import java.util.*;
import javax.swing.*;

 72

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class JPanelDialog extends JDialog implements
 PropertyChangeListener {

 protected JOptionPane optionPane;
 private static String[] options = { "Cancel" , "OK"};
 private static String okString = "OK";
 private JTextField[] fields;

 public JPanelDialog(Frame f, String title, boolean modal, JPanel
 panel, JTextField[]
 textFields, String words) {
 super(f, title, modal);
 fields = new JTextField[textFields.length];
 for (int i=0; i < textFields.length; i++) {
 fields[i] = textFields[i];
 }
 Object[] message = new Object[] { panel, words };
 optionPane = new JOptionPane(
 message, JOptionPane.PLAIN_MESSAGE,
 JOptionPane.OK_CANCEL_OPTION
);
 optionPane.addPropertyChangeListener(this);
 this.getContentPane().add(optionPane, BorderLayout.CENTER);
 this.pack();
 this.setLocationRelativeTo(f);
 this.setResizable(false);
 }

// This method gets the result of the dialog
 public String getValue() {
 String selectedValue = null;
 StringBuffer returnValue = new StringBuffer();
 if (optionPane.getValue()!= JOptionPane.UNINITIALIZED_VALUE) {
 int result = ((Integer) optionPane.getValue()).intValue();
 if (result == JOptionPane.OK_OPTION) {
 for (int i = 0; i < fields.length; i++) {
 String text = fields[i].getText().trim().replace(' ',
 '_');
 if (text.equals("")) {
 returnValue.append("null");
 }
 else {
 returnValue.append(text);
 }
 returnValue.append(" ");
 }
 selectedValue = returnValue.toString().trim();
 }
 }
 return selectedValue;
 }

 73

// PropertyChangeListener for JOptionPane
 public void propertyChange(PropertyChangeEvent evt) {
 if (evt.getPropertyName().equals(JOptionPane.VALUE_PROPERTY)) {
 this.dispose();
 }
 }

}

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX B: CREATING ANIMATION IN NSFSSIM

NSFSSim is structured with a Model-View-Controller (MVC) design. That is, a

non-visual simulation model (utilizing Simkit components and classes written in Java)

operates independently of the visual view (e.g., NSFSSim’s animation mode); a

controller (in the form of keyboard and mouse events applied to the GUI) serves to

synchronize the model with the view. The model and the view do not have to be aware

of the existence of the other to function properly.

When one clicks on NSFSSim’s main window to enable the animation mode, two

things occur: an animation window opens and a “Ping” thread is enabled. When this

thread is enabled, a “Ping” event is placed on the event list at regular intervals (the user

can modify the interval between the “Ping” events). When each “Ping” event occurs, the

Movers in the simulation model are painted in the animation window. Two of the classes

written to create the animation in NSFSSim are PingThread and AnimationFrame,

which are listed here in their entirety:

// The PingThread class

package nsfssim;

import simkit.*;

import java.awt.event.*;
import javax.swing.*;
import java.lang.reflect.*;

/**
 * <P> An extremely simple way to animate Simkit programs.
 * a Ping event occurs every deltaT utints of simulated time, which
 * correspond roughly to millisPerSimTime milliseconds of real time
 * (your mileage may vary). Any listeners to Ping may do as they
 * wish, such as updating the position of units drawn on a screen.
 *
 * <P> This is perhaps an overly naive approach. Suggestions are

 76

 * welcome.
 *
 * @author Arnold Buss
**/

public class PingThread extends SimEntityBase implements Runnable {

 private double deltaT; // Time between Pings events
 private double millisPerSimtime; // Real time per simulated time
 private boolean pinging; // true if currently active

 private long realTimeStep;
 private long startStep;

// constructors
 public PingThread(double dt, double mpst) {
 this.setDeltaT(dt);
 this.setMillisPerSimtime(mpst);
 }

 public PingThread(double dt, double mpst, boolean pinging) {
 this(dt, mpst);
 this.setPinging(pinging);
 }

/**
 * Simkit initialization -- if instance is created with
 * <CODE>pinging</CODE> set true, then create Thread and start it.
**/
 public void doRun() {
 if (this.isPinging()) {
 this.startPinging();
 }
 }

/**
 * Start pinging and wait forever (or until the Thread is stopped).
 * The <CODE>while</CODE> loop appears necessary to keep the Thread
 * from terminating by returning from <CODE>run()</CODE>.
**/
 public void startPinging() {
 new Thread(this).start();
 }

 public void run() {
 this.setPinging(true);
 waitDelay("Ping", 0.0);
 startStep = System.currentTimeMillis();
 }

/**
 * Stop and shut down the Event List.
**/
 public void stopPinging() {
 this.setPinging(false);
 this.interruptAll();

 77

 }

/**
 * The main point of the class is the Ping event, which actually does
 * nothing in and of itself other than schedule the next Ping event.
 * Note that the sleep time is the number of milliseconds equivalent
 * to deltaT, as specified by the user.
**/
 public synchronized void doPing() {
 if (isPinging()) {
 waitDelay("Ping", deltaT);
 try {
 Thread.sleep((long) (deltaT * millisPerSimtime));
 }
 catch (InterruptedException e) {}
 }

long now = System.currentTimeMillis();
 realTimeStep = now - startStep;
 startStep = now;
 long offBy = realTimeStep - (long) (deltaT * millisPerSimtime);
 }

 public void pause() { Schedule.pauseSimulation(); }
 public void resume() { this.startPinging(); }

 public void setDeltaT(double dt) {deltaT = dt;}
 public void setMillisPerSimtime(double mpst) {millisPerSimtime =
 mpst;}
 public void setPinging(boolean p) {pinging = p;}

 public double getDeltaT() {return deltaT;}
 public double getMillisPerSimtime() {return millisPerSimtime;}
 public boolean isPinging() {return pinging;}

}

// The AnimationFrame class

package nsfssim;
/**
 * <P> This class paints Movers when Ping events occur.
 * @author H.B. Le
**/
import simkit.*;
import simkit.smd.*;

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.text.*;

public class AnimationFrame extends JFrame implements

 78

 SimEventListener {

 private static String DEFAULT_TITLE;
 private static Icon BACKGROUND;

 static {
 DEFAULT_TITLE = "NSFSSim Animation";
 BACKGROUND = new ImageIcon(AnimationFrame.class.
 getResource("icons/geo.gif").getFile());
 }

// instance variables
 private Icon area; // The background image
 private Hashtable2 icons; // Stores the icon file names
 private Vector entities; // This instance's movers
 private Image offscreen; // For double-buffering the display
 private JPanel sandbox;
 private Graphics dbuf;
 private PingThread pt; // This instance’s PingThread

// constructors
 public AnimationFrame(PingThread ping) {
 this(DEFAULT_TITLE, ping);
 }

 public AnimationFrame(String title, PingThread ping) {
 super(title);
 pt = ping;
 this.init();
 area = BACKGROUND;
 }

 public AnimationFrame(int x, int y, int w, int h, PingThread ping) {
 this(x, y, w, h, ping, BACKGROUND);
 this.setBounds(x, y, w, h);
 pt = ping;
 this.init();
 }

public AnimationFrame(int x, int y, int w, int h, PingThread ping,
 Icon geo) {

 super(DEFAULT_TITLE);
 this.setBounds(x, y, w, h);
 pt = ping;
 area = geo;
 this.init();
 }

 public AnimationFrame(String title, int x, int y, int w, int h,
 PingThread ping, Icon geo, Hashtable2 theIcons) {
 super(title);
 this.setBounds(x, y, w, h);
 pt = ping;
 area = geo;
 this.init();
 this.setIcons(theIcons);

 79

 }

// instance methods
 public void init() {
 sandbox = new JPanel();
 sandbox.setBackground(Color.white);
 this.getContentPane().add(sandbox, BorderLayout.CENTER);
 pt.addSimEventListener(this);
 this.getContentPane().add(new PingPanel(pt, this),
 BorderLayout.SOUTH);
 entities = new Vector();
 }

/**
 * Redraw the screen based on the current position of the Movers using
 * double-buffering.
**/
 protected void updateEntities() {
 Graphics g = sandbox.getGraphics();
 if (offscreen == null) {
 offscreen = sandbox.createImage(sandbox.getSize().width,

 sandbox.getSize().height);
 }
 dbuf = offscreen.getGraphics();
 dbuf.fillRect(0, 0, getContentPane().getSize().width,
 getContentPane().getSize().height);
 area.paintIcon(getContentPane(), dbuf, 0, 0);
 for (Enumeration e = entities.elements(); e.hasMoreElements();) {
 Mover nextMover = (Mover) e.nextElement();
 if (nextMover instanceof NSFSShip) {
 this.paintShipGraphic(nextMover);
 }
 else if (nextMover instanceof ArtilleryBattery &&
 ((ArtilleryBattery) nextMover).isAlive()) {
 this.paintBatteryGraphic(nextMover);
 }
 else if (nextMover instanceof ArtilleryBattery &&
 !((ArtilleryBattery) nextMover).isAlive()) { }
 else {
 int x = (int) nextMover.getCurrentLocation().getXCoord();
 int y = (int) nextMover.getCurrentLocation().getYCoord();
 this.paintGraphic(this.getIcon(nextMover, "default"), x,
 y);
 }
 }
 g.drawImage(offscreen, 0, 0, this);
 g.dispose();
 dbuf.dispose();
 }

 /**
 * Paints the ship using one of several possible icons.
 * @param ship = the ship to be painted
 **/
 public void paintShipGraphic(Mover ship) {
 int x = (int) ship.getCurrentLocation().getXCoord();

 80

 int y = (int) ship.getCurrentLocation().getYCoord();
 if (((NSFSShip) ship).isMoving()) {
 if (((NSFSShip) ship).isCommencingOnloadSequence()) {
 this.paintGraphic(this.getIcon(ship, "stbdUW"), x, y);
 }
 else {
 this.paintGraphic(this.getIcon(ship, "portUW"), x, y);
 }
 }
 else if (((NSFSShip) ship).isCommencingOnloadSequence()) {
 this.paintGraphic(this.getIcon(ship, "stbd"), x, y);
 }
 else {
 this.paintGraphic(this.getIcon(ship, "port"), x, y);
 }
 }

 /**
 * Paints the battery using one of several possible icons.
 * @param battery = the battery to be painted
 **/

 public void paintBatteryGraphic(Mover battery) {
 int x = (int) battery.getCurrentLocation().getXCoord();
 int y = (int) battery.getCurrentLocation().getYCoord();
 if (!((ArtilleryBattery) battery).isFiring()) {
 if (((ArtilleryBattery) battery).isAtFullStrength()) {
 this.paintGraphic(this.getIcon(battery, "fullStrength"), x,

 y);
 }
 else if (((ArtilleryBattery) battery).getCurrentNumberGuns() >

 1) {
 this.paintGraphic(this.getIcon(battery, "weak"), x, y);
 }
 else {
 this.paintGraphic(this.getIcon(battery, "neardead"), x, y);
 }
 }
 else {
 this.paintGraphic(this.getIcon(battery, "firing"), x, y);
 }
 }

 public void paintGraphic(Icon icon, int x, int y) {
 icon.paintIcon(getContentPane(), dbuf, x, y);
 }

/**
 * Adds a new mover.
 * @param m = the new Mover added.
**/
 public void addMover(Mover m) {
 if (!entities.contains(m)){
 entities.addElement(m);
 }

 81

 }

/**
 * Removes a mover.
 * @param m = the removed Mover.
**/
 public void removeMover(Mover m) {
 if (entities.contains(m)) {
 entities.removeElement(m);
 }
 }

/**
 * Removes all movers.
**/
 public void removeMovers() {
 entities.clear();
 }

/**
 * Gets a copy of movers in a thread-safe manner.
**/
 public Vector getMovers() {
 Vector copy = null;
 synchronized(entities) {
 copy = (Vector) entities.clone();
 }
 return copy;
 }

/**
 * Here's where the Ping event is heard and entities are updated.
**/
 public void processSimEvent(SimEvent e) {
 if (e.getEventName().equals("Ping")) {
 this.updateEntities();
 }
 }

 public void setIcons(Hashtable2 theIcons) { icons = theIcons; }

 public Icon getIcon(Mover mover, String iconKey) {
 String moverClass = mover.getClass().getName();
 String iconFile = icons.get(moverClass, iconKey).toString();
 return new

 ImageIcon(AnimationFrame.class.getResource(iconFile).
 getFile());

 }

 public JPanel getSandbox() { return sandbox; }
 public PingThread getPingThread() { return pt; }

}

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

1. Allen, D.J., et. al., Naval Surface Fire Support Road Map Study, Phase 1 Report,
Johns Hopkins University Applied Physics Laboratory Report, VS-96-005, October
1996.

2. Bradley, Gordon H. and Arnold H. Buss, An Architecture for Dynamic Planning

Systems Using Loosely Coupled Components, Proposal for Reimbursable Research,
Operations Department, Naval Postgraduate School, 1997.

3. Chien, Stanfield L., Optimizing Ordnance Loadout of Navy Surface Combatants

Operating in Support of Naval Surface Fire Support, Master’s Thesis, Operations
Research Department, Naval Postgraduate School, 1997.

4. Foss, Christopher F., Jane’s Armour and Artillery, Nineteenth Edition 1998-1999,
 Alexandria: Jane’s Information Group, Inc., 1998.

5. Geary, David M., Graphic Java 2, Volume II: Swing, Palo Alto: Sun Microsystems,
 Inc., 1999.

6. Holzer, Robert, “ERGM Complexity Prompts Independent Review Panel,” Defense

News, August 2, 1999.

7. Horstmann, Cay S. and Gary Cornell, Core Java 1.1, Volume 1 - Fundamentals,

Mountain View: Sun Microsystems, Inc., 1997.

8. Law, Averill M. and David W. Kelton, Simulation Modeling and Analysis, New

York: McGraw-Hill, Inc., 1991.

9. Office of the Chairman of the Joint Chiefs of Staff, Department of Defense

Dictionary of Military and Associated Terms, Joint Pub 1-02, March 23, 1994, as
amended through April 6, 1999.

10. Program Executive Officer, Cruise Missiles Project and Unmanned Aerial Vehicles
 Joint Project, Tomahawk Weapon System Baseline IV Phase 1: Tactical Tomahawk
 Concept of Operations Document, JCM-2237 (Draft), September 24, 1998.

11. Schweizer, Roman, “LASM-NTACMS Duel Heats Up in Pentagon, Issue Could
 Head to JROC,” Inside the Navy, March 22, 1999.

12. Schweizer, Roman, “Navy Picks Land Attack Standard Over Army Missile to Outfit
 Aegis Ships”, Inside the Navy, May 4, 1998.

13. Stork, Kirk, Sensors in Object Oriented Discrete Event Simulation, Master’s Thesis,
 Operations Research Department, Naval Postgraduate School, 1996.

 84

14. Townsend, James R., Defense of Naval Task Forces From Anti-Ship Missile Attack,
 Master’s Thesis, Operations Research Department, Naval Postgraduate School, 1999.

15. Zimm, A.D., et. al., Land Attack Warfare Technical Studies, Johns Hopkins
 University Applied Physics Laboratory Report, JWR-98-013, February 1998.

16. Zimm, A.D., Advanced Gun Study: Effectiveness Analyses: TAFSM, ELAN, and
 ARTQUIK Modeling, Johns Hopkins University Applied Physics Laboratory Report,
 JWR-99-001, Revision 1, February 17, 1999.

17. Zimm, A.D., Advanced Gun Study: Supplemental Analysis: Land Attack
 Effectiveness, Johns Hopkins University Applied Physics Laboratory Report, JWR-
 99-007, May 16, 1999.

 85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center... 2
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library.. 2

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Mr. Stephen M. Biemer... 2

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

4. Mr. John F. Keane... 1

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

5. Mr. Richard L. Miller.. 1

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

6. Mr. Edward A. Smyth... 1

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

7. Mr. Alan D. Zimm ... 1

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Rd.
Laurel, Maryland 20723-6099

8. Professor Arnold H. Buss, Code OR/Bu... 2

Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

9. LCDR Douglas J. MacKinnon, Code OR/Mg.. 1

Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

 86

10. LT Hung B. Le ... 2
 2565Archdale Dr.
 Virginia Beach, Virginia 23456-6881

